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Fig. 1: We present AnySkin, a skin sensor made for robotic touch that is easy to assemble, compatible with different robot end-effectors
and generalizes to new skin instances. AnySkin senses contact through distortions in magnetic field generated by magnetized iron particles
in the sensing surface. The flexible surface is physically separated from its electronics, which allows for easy replacability when damaged.

Abstract— While tactile sensing is widely accepted as an
important and useful sensing modality, its use pales in compar-
ison to other sensory modalities like vision and proprioception.
AnySkin addresses the critical challenges that impede the use of
tactile sensing – versatility, replaceability, and data reusability.
Building on the simplistic design of ReSkin, and decoupling
the sensing electronics from the sensing interface, AnySkin
simplifies integration making it as straightforward as putting on
a phone case and connecting a charger. Furthermore, AnySkin
is the first uncalibrated tactile-sensor to report cross-instance
generalizability of learned manipulation policies. To summarize,
this work makes three key contributions: first, we introduce a
streamlined fabrication process and a design tool for creating an
adhesive-free, durable and easily replaceable magnetic tactile
sensor; second, we characterize slip detection and policy learn-
ing with the AnySkin sensor; third, we demonstrate zero-shot
generalization of models trained on one instance of AnySkin
to new instances, and compare it with popular existing tactile
solutions like DIGIT and ReSkin.

I. INTRODUCTION

Touch sensing is widely recognized as a crucial modality
for biological movement and control [1]. Unlike vision,
sound, or proprioception, touch provides sensing at the
point of contact, allowing agents to perceive and reason
about forces and pressure. However, a closer examination
of robotics literature reveals a different narrative. Prominent
works and current state-of-the-art in robot learning primarily
utilize vision sensing in conjunction with proprioception to
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train manipulation skills [2], [3], often ignoring touch. If
touch is indeed vital from a biological perspective, why does
it remain a second-class citizen in sensorimotor control?

In this work we present AnySkin, a new touch sensor that
is cheap, convenient to use and has consistent response across
different sensor instances. AnySkin builds on ReSkin [4], a
magnetic-field based touch sensor, by improving its fabrica-
tion, separating the sensing mechanism from the interaction
surface, and developing a new self-adhering, self-aligning
attachment mechanism. This allows AnySkin to (a) have
stronger magnetic fields, which significantly improves its
sensor response, (b) be easy to fabricate for arbitrary surface
shapes, which allows easy use on different end-effectors, (c)
be easy to replace the sensor without adversely affecting the
data collection process or the efficacy of models trained on
previous sensors (Fig. 1).

We run a suite of experiments to understand the efficacy of
AnySkin vis-a-viz other prominent touch sensors. Our main
findings can be summarized below:

1) AnySkin can readily be used on a variety of robots
including xArm, Franka, and the four-fingered Leap
hand (See fabrication details in Section III).

2) AnySkin is compatible with ML techniques for slip
detection and visuo-tactile policy learning for precise
tasks such as inserting USBs.

3) AnySkin takes an average of 12 seconds to replace and
can be reused after replacement.

4) Models trained on one AnySkin transfer zero-shot to
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a different AnySkin with only a 13% reduction in
performance on a plug insertion task compared to the
43% drop in performance with ReSkin [4] sensors.

AnySkin is fully open-sourced. Videos of fabrication,
attachment, and robot policies are best viewed on our project
website: https://any-skin.github.io/.

II. ANYSKIN: COMPONENTS

AnySkin builds on ReSkin [4], a tactile skin composed
of a soft magnetized skin coupled with magnetometer-based
sensing circuitry. By detecting distortions in magnetic fields,
ReSkin measures skin deformations caused by normal and
shear forces [5], [4]. Its adaptability enables integration
across various applications, from robotic hands [6] to arm
sleeves and even dog shoes. AnySkin uses the same 5-
magnetometer circuitry as ReSkin, while introducing key de-
sign and fabrication changes to the skin to improve durability,
repeatability, and replaceability.

• Magnetizing skins post-curing using a pulse magnetizer.
• Introducing physical separation between magnetic elas-

tomer and magnetometer circuit.
• Utilizing finer magnetic particles to achieve a more

uniform particle distribution.
• Implementing a self-aligning design for reduced vari-

ability in the positioning of elastomers and circuitry.

While some of these additions have been used in isolation
in prior work [6], [7], [8], there has been little discussion on
their effect on sensor response.

Applying a magnetic field during elastomer curing in-
creases variability in the signal response. Before curing,
magnetic particles are free to move through the liquid
elastomer under the effect of the magnetic field. As a result,
the distribution of particles is influenced by the temporal
evolution of the applied magnetic field, i.e. how you move
the magnets into place, which can be difficult to control
when fabricating. To circumvent these disadvantages, we
propose using a pulse magnetizer to magnetize the skins
post-curing in line with [6], [8], as shown in Fig. 2a. The
pulse magnetizer can apply a large enough magnetic field
to magnetize the dipoles in the magnetic elastomer. Curing
outside the influence of magnetic fields allows for a more
uniform distribution of magnetic particles through the bulk
of the sensor, thereby improving magnetic field consistency.

However, simply changing the magnetization procedure
results in other problems. Curing outside the influence of a
magnetic field causes the particles to settle to the bottom
of the sensing skin due to gravity as shown in Fig. 2b. This
results in lower durability as the skin begins to shed magnetic
particles, particularly during contact-rich interactions. To get
around this problem, we replace the magnetic particles with
much finer particles (details in Section III-B). The smaller
particles operate in a sufficiently low Reynolds number
regime to allow the elastomer to cure before they can settle
on one surface of the elastomer.

III. ANYSKIN: FABRICATION

The overall fabrication procedure follows the general
outline of ReSkin: Magnetic particles and elastomer are
mixed in specified ratios; the resulting mixture is poured
into the molds; cured skins are magnetized. The shape of the
fingertip-skin assembly is designed to be triangular as shown
in Fig. 1 to improve reachability. In this section, we elaborate
on the details of the fabrication procedure for AnySkin, and
key changes to the ReSkin fabrication procedure that result
in a new, upgraded sensor.

A. Mold design

The shape of the magnetic skin is dictated by the molds
used for curing. To create self-adhering skins as outlined in
Section II, we present a two-part mold design as shown in
Fig. 2a. We choose a skin thickness of 2 mm following [4]
with a triangular shape for its advantageous form factor for
precise manipulation. All the experiments presented in this
paper use this triangular skin. We also open-source a mold
design CAD tool that generates designs for the fingertip as
well as 2-part molds from just a 2D drawing. Unlike tactile
sensors that require significant engineering for changes in
form factor [9], [10], AnySkin makes it effortless to diversify
your tactile sensor.

B. Elastomer composition

For AnySkin, we mix magnetic microparticles and two-
part polymer (Dragonskin 10 Slow; Smooth-On) in the
same 2:1:1 ratio as ReSkin, while using finer Magnequench
MQFP-15-7(25µm). These particles are about 100x smaller
than the MQP-15-7(-80 mesh) used with ReSkin, and do
not settle before curing, due to their lower Reynolds num-
ber [11]. This ensures that magnetic particles are more evenly
distributed through the volume of the skin, thereby improving
consistency of the signal.

C. Magnetization

ReSkin is magnetized by sandwiching the magnetic elas-
tomer mix between a grid of magnets while it is curing.
This results in higher variance in distribution of magnetic
particles within the core of the skin based on the exact
timing of sandwiching the skins. Drawing from D’Manus [6],
we use a pulse magnetizer for magnetizing the skins after
curing is complete. Separating the magnetizing process from
the curing process allows the skins to cure undisturbed and
maintain a more uniform distribution of magnetic particles.
Furthermore, the magnetic field applied by the pulse mag-
netizer is far stronger than the sandwich of grid magnets.
This results in skins with stronger magnetic fields, which in
turn enables larger separations between magnetic skin and
magnetometer circuitry.

D. Magnetic elastomer fabrication

The final fabrication process follows similar steps as
the ReSkin fabrication process. The molds are first aligned
using the built-in alignment guides and clicked together. We
use plastic clamps to hold the parts together. The two-part

https://any-skin.github.io/


Outlet cavity

Inlet cavity

Alignment guides

Smooth-On 
DragonSkin 10 Slow

Magnequench 
MQFP-15-7 (25μm)

+

Pulse MagnetizerAnySkin

(a) Fabrication of AnySkin (b) Top and bottom surfaces of skins

Fig. 2: (a) AnySkin is made by mixing Smooth-On DragonSkin 10 Slow and MQFP-15-7(25µm) magnetic particles in a 1:1:2 ratio, and
curing it in the two-part molds shown above. Cured skins are magnetized using a pulse magnetizer. (b) Skins made with MQP-15-7(-80
mesh) and MQFP-15-7(25µm) particles. Note the concentration of particles at the surface of the former due to the larger particle size.

TABLE I: AnySkin’s signal strength is comparable to ReSkin with lower variability across instances, and physical separation from the
magnetometer electronics. Statistics computed over 5 samples of each type (PM: Pulse magnetizer, FP: finer particles, SA: self-aligning).

Experiment ReSkin +PM +FP +SA (AnySkin)
Bxy Bz Bxy Bz Bxy Bz Bxy Bz

Average strength, in µT 1062 302 1818 5212 1602 5784 283 1265
Normalized std. deviation across instances 0.54 0.87 0.34 0.12 0.21 0.15 0.12 0.10
Normalized std. deviation across 1mm misalignments 1.38 1.43 0.25 0.11 0.18 0.07 Self-aligning

elastomer compound is then mixed and degassed. This is
followed by the addition of magnetic micro particles and
another round of mixing and degassing. Once degassing is
complete, the magnetic elastomer mix is poured through the
mold inlet as shown in Fig. 2 until it emerges at the outlet,
pausing as necessary to allow the mixture to flow through
and fill the entire mold. The filled mold is then placed in a
vacuum chamber and a pressure of 29mm of Hg/in is applied,
again pausing as necessary to prevent overflow as the liquid
bubbles. This pressure is held for 10 minutes before releasing
the vacuum. The molds are allowed to rest for 16 hours,
before prying them open and trimming excess material to
reveal the fully cured AnySkin.

IV. EXPERIMENTS AND RESULTS

In this section, we perform extensive experiments to
demonstrate the capabilities of AnySkin as a tactile sensor,
and within the context of policy learning. These experiments
are designed to answer the following questions:

• How do the fabrication changes outlined in Section II
influence signal characteristics?

• Can AnySkin sensors be used to detect slip?
• How does AnySkin’s ease of replaceability compare

with other sensors like DIGIT and ReSkin?
• How does replacing AnySkin affect the performance of

learned policies, and compare with other sensors like
ReSkin and DIGIT?

A. Comparison between ReSkin and AnySkin signal

To quantitatively demonstrate the effect of each of the
fabrication changes listed in Section II towards improving
the consistency of AnySkin, we present the following set of
experiments analyzing the raw signal from the four different
skins shown in Table I, tracking the progression from ReSkin
to AnySkin:

1) Effect of pulse magnetizer on signal strength: To un-
derstand the effect of the pulse magnetizer on signal strength,
we take five instances of each skin type and measure the
raw signal corresponding to each instance. We average the
absolute values across the three axes of the five magnetome-
ters, and report the results in Table I. We see a significant
increase in the raw magnetic field for both sets of pulse
magnetized skins. This increase allows us to add a physical
separation between sensing skin and the sensory electronics,
which improves replaceability, as well as repeatability of the
signal as discussed below.

2) Comparison of signal consistency across skins: To
compare signal consistency across the sensing skins, we
compute the standard deviation along each axis of the five
magnetometers across the five instance of each skin type.
To account for the larger signal strengths of the pulse
magnetized skins and allow for a fairer comparison, we
normalize the computed standard deviations by the mean
absolute values along xy and z axes for each skin type.
Aggregated statistics for the different skins are presented in
Table I.
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Fig. 3: Training and test locations of the target objects interacted with for plug insertion, card swiping and USB insertion (left to right).
The blue region represents the extent of variation in the location of the target object, while the green-orange blocks denote held-out test
configurations used for evaluation.

B. Slip Detection

We quantify AnySkin’s ability to detect slip through a
controlled experiment. Our setup consists of a Kinova Jaco
arm and an Onrobot RG-2 gripper with integrated AnySkin.
An object held by a human operator is grasped and lifted up
slowly for 1 second. We use a set of 40 daily objects – 30
for training and 10 evaluation – with varying shapes, weights
and materials. We collect 6 trajectories for each object by
changing the grasping force, width and location. After the
data collection is complete, a human annotator labels the
sequence as slip or no-slip from the corresponding videos.
Our model is able to detect slip on unseen objects with 92%
accuracy.

C. Replaceability in Policy Learning

The most important consequence of the signal consistency
and replaceability of AnySkin outlined so far, is its ability
to enable policy generalization across different instances
of the skin. In this section, we demonstrate the cross-
instance generalizability of AnySkin across three precise
manipulation tasks. We follow this up with a comparison
of the cross-instance generalizability of policies trained on
DIGIT, ReSkin and AnySkin on the plug insertion task.

1) Experimental Setup: For our policy learning experi-
ments, we train behavior cloning models for a set of precise
manipulation tasks. Our experimental setup consists of an X-
Arm 7DOF robot in a robot cage. A Meta Quest 3 and the
accompanying joystick controller are used to teleoperate the
robot using Open-Teach [12], an open-source teleoperation
framework.

We demonstrate the replaceability of AnySkin on a set of
three contact-rich manipulation tasks - Plug Insertion, Card
Swiping and USB Insertion (See Fig. 3 for test variations).

2) Model Architecture and Training: Our policies are
trained using behavior cloning. The BAKU [13] architecture
is used as the policy architecture. BAKU tokenizes each input
using a modality-specific encoder: image inputs from cam-
eras and DIGITs are encoded using ResNet-18 [14] encoders,
while AnySkin and ReSkin inputs are encoded using an MLP
encoder. An action token is appended to the set of encoded
tokens before passing the sequence through a transformer
encoder, and the output corresponding to the action token is
used to predict actions. We use action chunking [15] and
predict the next 10 actions at every timestep. For every

training setting, we train three separate models corresponding
to three different seeds, and present aggregated statistics on
10 policy rollouts.

3) Evaluating cross-instance generalizability: To investi-
gate the replaceability of AnySkin in the context of policy
learning, we evaluate behavior cloning policies trained using
a single instance of AnySkin on a new instance. Table II
presents a comparison between policy performance with the
original and swapped skins for each of the precise, contact-
rich tasks outlined above.

4) Comparison across sensors: To better contextualize
the significance of this result, we present a replaceability
comparison with DIGIT [9] and ReSkin [4] sensors. We col-
lect two additional datasets of 96 demonstration trajectories
each for the plug insertion task with these sensors similar
to AnySkin. Replaceability is evaluated by swapping the
training skin for a new skin during evaluation as outlined
in the previous section. Success rates from 10 evaluations
across three seeds for each setting are reported in Table II.

TABLE II: Success rates (out of 10) for policies when swapping
out tactile skins. All statistics computed over 3 training seeds

Task Cameras only Cameras + Skin

Original skin Swapped skin

Cross-instance generalization
Plug Insertion 1.7± 0.6 6.7± 1.5 5.3± 2.5
Card Swiping 2.0± 1.0 7.0± 1.7 6.3± 0.6
USB Insertion 1.7± 1.2 5.7± 1.5 3.0± 1.0

Comparison across sensors – Plug Insertion
AnySkin 1.7± 0.6 6.7± 1.5 5.3± 2.5
ReSkin 1.7± 1.2 6.0± 1.7 1.7± 1.2
DIGIT 1.7± 1.5 2.3± 0.6 1.3± 0.6

Based on these results, we find that visuotactile policies
trained with ReSkin and AnySkin have similar performance
on solving the plug insertion task, while DIGIT policies are
unable to capture the minute interactions. However, when the
sensor instance is replaced, the performance of the ReSkin
policy falls 43% to the same level as the camera-only policy,
while the performance of AnySkin policies only drops by
13%. This transferability is evidence of AnySkin’s superior
signal consistency, and is a significant boost to scaling
efforts like training large tactile models as well as real world
deployment of models trained in the laboratory.
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