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Abstract— Generalizing robot behaviours across object ge-
ometries remains a core challenge in manipulation. We propose
a framework for geometry-aware demonstration augmenta-
tion that enables robust policy learning under shape varia-
tion. Starting from a single input mesh, our fully automatic
geometry-augmentation pipeline produces a rich spectrum of
shape variants by applying controlled stretching, compression,
and local bulging while strictly preserving contact surfaces and
support regions, so each instance remains structurally sound
and manipulation-ready. Crucially, the augmentation process
intrinsically guarantees a dense point-wise correspondence
between the original and deformed geometries, allowing direct
transfer of demonstration trajectories to every new shape. This
yields a scalable foundation for extensive, grounded datasets
of augmented demonstrations without additional human effort.
We validate the pipeline on a diverse suite of household and
industrial objects, generating varied shape augmentations and
replaying pick-and-place demonstrations.

I. INTRODUCTION

Robotic manipulation in unstructured environments re-
quires policies that can generalize across a wide range of
object geometries and task variations. While recent advances
in behavior cloning have enabled robots to acquire com-
plex behaviors from demonstrations ([1], [2]), these policies
often struggle to transfer when object shapes deviate even
slightly from the training set. This limits the scalability
of learned policies, especially in real-world settings where
objects exhibit diverse geometric properties, such as mugs
with varying heights and widths, or assembly parts with
subtle dimensional differences.

One promising direction to address this generalization
gap is to leverage demonstration augmentation ([3], [4],
[5], [6]) to synthetically generate variations of the original
demonstrations to cover a broader distribution of object
instances. Current augmentation pipelines mainly fail into
two categories: 1) Lightweight geometry transformations,
such as uniform scaling, axis-aligned stretching, random
bounding-box warps, and light vertex noise, are trivial to
script and keep local grasp features intact yet barely perturb
the underlying shape manifold and thus provide limited
coverage of real-world object diversity; 2) Fully generative
pipelines, i.e., image-to-3D and text-to-3D generation, offer
the opposite extreme by offering unbounded mesh varieties.
However, their outputs often suffer from poor geometry qual-
ity, demand extensive post-processing, and, most critically,
require a fresh demonstration for every synthesized instance

1Stanford Online High School
2Georgia Institute of Technology
3MIT CSAIL
4UMass Amherst

before they can be used for policy learning. The labor cost of
collecting or adapting demonstrations overwhelms the benefit
of an unlimited mesh supply.

Neither strategy can augment demonstrations at scale:
lightweight geometric transformations yield insufficient
geometric diversity, whereas fully image- or text-based
generative models incur prohibitive demonstration over-
head. This exposes an intrinsic trade-off between geo-
metric diversity and demonstration efficiency, leaving the
geometry-generalization gap unresolved.

To tackle this bottleneck, we leverage recent advances
in high-fidelity shape deformation and introduce a frame-
work of geometry-aware demonstration augmentation for
robotic manipulation learning. Starting from a single ex-
pert trajectory on a canonical object, we generate a fam-
ily of plausible shape variants with a slippage-preserving
deformation operator that applies controlled stretching and
compression while maintaining contact surfaces and support
regions. Since the deformation is bijective, it furnishes a
dense point-wise mapping between the original and every
altered mesh, allowing the demonstration to be transferred
to each variant with negligible cost. We validate the pipeline
on a representative suite of household and industrial items—
including mugs, plates, brackets, screws, and gears—by
generating diverse shape augmentations for each object and
replaying the corresponding pick-and-place demonstrations.

II. METHOD

A. Slippage-Preserving Shape Deformation

Our method draws on recent advances in nonlinear shape
deformation from shape analysis [7]. Unlike rigid, uniform,
or axis-aligned transforms, these deformations can substan-
tially enlarge the space of augmented shapes while guaran-
teeing a vertex-level correspondence between each original
and warped mesh.

When deforming 3D objects, a core requirement is to
preserve essential surface properties and minimize distor-
tion. Slippage-preserving deformation meets this need by
maintaining the local surface characteristics that enable rigid
“slipping” motions. Formally, a surface is slippable with
respect to a rigid motion when the motion translates or
rotates the surface along itself without introducing empty
space or overlaps. As shown in Fig. 1, this property is espe-
cially relevant in objects with cylindrical regions (slippable
through translation along, and rotation about, the cylinder’s
axis), spherical regions (slippable via rotations around any
axis through the center), and planar regions (slippable by



Fig. 1. Common slippable surface types. Each shape permits translation
or rotation along specific axes without causing gaps or overlaps.

translations and rotations around the plane’s normal). Re-
taining these slippable freedoms is critical for applications
that depend on geometric fidelity in surface contact, such as
a mug’s rim thickness in robotic grasping or the snug fit of
assembled parts.

Slippage preservation is particularly critical in robotic
applications involving human-made objects, where contact-
rich interactions and geometric fidelity directly impact task
success. Everyday items such as mugs, plates, and mechan-
ical parts often feature planar, cylindrical, or spherical sur-
faces that must maintain consistent thicknesses or attachment
points for reliable gripping, placing, or assembly. Subtle
deviations in object geometry, e.g., an elongated handle or
uneven rim, can invalidate well-tuned motions, requiring
extensive demonstration data or manual re-optimization. By
ensuring that each object’s slippable regions remain free to
undergo small rigid motions (translations or rotations) even
after deformation, robots can readily transfer learned trajec-
tories to novel but structurally similar objects without losing
the physical plausibility essential for robust manipulation.

B. Automatic Slippage-Preserving Deformation for Shape
Augmentation

In this section, we describe a pipeline that automatically
applies slippage-preserving deformation to 3D shapes to
generate augmented geometry with controlled variability.
Our method leverages a cylinder-fitting procedure to define
deformation handles and displacement vectors for each ob-
ject, ensuring that parts of the shape that must remain rigidly
slippable can be deformed without losing the geometric
properties that support robotic manipulation.

The input of our system is a triangular mesh M repre-
senting a human-made object of interest. The output is a de-
formed mesh M′, in which key regions (such as cylindrical
handles or rims) have been reshaped via slippage-preserving
deformation. The method preserves crucial geometric cor-
respondences between M and M′, allowing direct transfer
of robotic demonstrations (trajectories, grasps, etc.) without
additional manual intervention.

Our first step is to fit a simple cylinder Cyl(c,a, r, h),
where c ∈ R3 is the center of the cylinder, a ∈ S2 is the
cylinder’s axis (a unit vector), r ∈ R+ is the radius of the
cylinder, and h ∈ R+ is the height of the cylinder, to the

Fig. 2. Comparison between direct scaling and slippage-preserving defor-
mation. While direct scaling may distort critical features (e.g., the shape
of the handle), slippage-preserving deformation maintains the geometric
fidelity of functional parts during shape modifications.

mesh region in question. To do so, we minimize an energy
combining a distance term and a center-of-mass regularizer:

min
c, a, r, h

∑
p∈Ω

dist
(
p,Cyl(c,a, r, h)

)
+ λ∥c− cm∥2, (1)

where Ω ⊂ M is the subset of vertices belonging to the ap-
proximately cylindrical component we want to deform. The
first term measures the orthogonal distance of p to the sur-
face of that cylinder. The second term λ∥c−cm∥2 encourages
the cylinder center c to remain close to the object’s overall
center of mass cm. System 1 defines a quadratic energy,
which we minimize using Newton’s method efficiently.

Once the cylinder parameters (c,a, r, h) have been es-
timated, we specify control handles for the slippage-
preserving deformation. These handles are the vertices that
will be displaced to produce the desired new geometry. Two
intuitive scenarios are included:

• Radial Enlargement: We place handles on the circular
cross-sections at the top and bottom of the cylinder,
allowing the radius r to be scaled outward or inward.

• Height Adjustment: We position handles along the axis
a so that translating these points effectively “pulls” the
cylinder taller or compresses it.

Consider a mug as an example. Radial enlargement lets
the rim or handle grow thicker or thinner while keeping
its cylindrical form intact. Height adjustment elongates or
compresses the mug along its axis, producing a taller or
shorter cup without altering the diameter of the opening.

For each handle vertex vi ∈ R3, we define a target
position v∗

i that aligns with the chosen design parameters.
For instance, to enlarge the radius from r to r′ > r,
we shift each handle vertex radially outward in the plane
perpendicular to a:

v∗
i = c+ (vi − c)⊥

(
r′

r

)
+ (vi − c)∥,

where (vi−c)⊥ is the component of (vi−c) perpendicular
to the axis a, and (vi−c)∥ is the parallel component. Similar
expressions govern height adjustments or combined changes.
Additional constraints, such as preserving the wall thickness



Fig. 3. Geometry-aware, slippage-preserving deformations across six object categories. For each canonical input (left) two augmented variants are shown
(right), illustrating selective edits such as widening gears while either scaling or preserving wall thickness, resizing screw threads or heads, adjusting
bracket bases versus holes, and independently controlling container radius, height, or depth. Green text marks attributes that are augmented, red text marks
attributes that are preserved.

of a mug or preserving the hole diameter of a bracket, can
also be incorporated into the deformation by constraining
displacement vectors to be zero, i.e., v∗

i = vi.
With handles and displacement vectors defined, we apply

a slippage-preserving solver [7] to deform the mesh. The
solver alternates between optimizing vertex positions and
local transformation matrices until it converges upon a new
mesh M′ that satisfies the handle displacements to retain
slippable surface motions. As shown in Fig. 2, these de-
formations offer far greater flexibility than simple geometry
transformations such as axis-aligned scaling. Our method can
preserve the general form of a mug’s handle while altering
specific dimensions such as radius and height. In contrast,
direct scaling might distort the handle’s thickness or size in
undesirable ways.

C. Trajectory Transfer to Augmented Objects

The goal of trajectory transfer is to replay the original
pick-and-place motion on every deformed object without
re-recording demonstrations. Given a single demonstration
on the canonical mesh M, we automatically retarget both
the object-centric motion and the robot’s joint trajectory
to every deformed variant M′. This procedure relies only
on the dense, bijective correspondence delivered by our
slippage-preserving deformation.

Stage 1: Warping the object path. The original demon-
stration defines a sequence of object poses τM = {Ti}N−1

i=0

from start psM to goal pgM. We express each pose as an offset
∆i = SM(si)

−1Ti, where SM(s) is the unit-speed geodesic

interpolating between psM and pgM and si = i/(N − 1).
For the deformed mesh we form an analogous geodesic
SM′(s) between (psM′ , p

g
M′) and rebuild the trajectory by

T ′
i = SM′(si)∆i. This preserves the temporal cadence

and fine-scale motion of the original path while aligning its
endpoints with the geometry of M′.

Stage 2: Transferring the grasp and joint path. At
each time step i the demonstration provides an end-effector
pose gi and its contact vertex ci ∈ M. The correspondence
map Φ : M → M′ yields the partner vertex c′i = Φ(ci)
and guarantees consistent surface normals. We maintain the
object-relative gripper transform Tg,i = T−1

i gi by setting
the new gripper pose g′i = T ′

i Tg,i. Inverse kinematics
(with joint-limit and collision checks) converts {g′i} into a
joint-space trajectory {qi}.

Since both stages depend only on Φ and closed-form
calculations in SE(3), trajectory retargeting incurs negligi-
ble computation and requires no additional optimisation or
manual tuning, yet preserves grasp alignment and contact
semantics across all augmented shapes.

III. EXPERIMENTS

A. Implementation Details

We use four manipulation-relevant object classes: gear,
fastener, bracket, and container. Each mesh is repaired as
watertight and normalized to the unit bounding box. For
cylinder fitting, Newton iterations stop when the gradient
norm drops below 10−5. The average total number of itera-
tions is 15. For each object, we augment it with 24 sets of



TABLE I
QUANTITATIVE RESULTS ON TRAJECTORY TRANSFER.

Object Type Average Success Rate (%)

Gear 91.7
Fastener 87.5
Bracket 95.8

Container 87.5

Fig. 4. Robot trajectory transfer on mug rearrangement (grasp → lift
→ place). Top: original demonstration on the canonical mug. Bottom:
retargeted trajectory on a slippage-preserving mug variant.

handles and displacement handles as described in Sec. II-B.
A single pick-and-place demonstration is recorded for every
canonical mesh in Genesis [8] with a Franka Emika Panda
robot.

B. Results on Shape Augmentation

Figure 3 shows qualitative results of the augmented
shapes:

• Gears: the body can be widened while either scaling or
preserving tooth wall-thickness;

• Fasteners: screw heads or threads resize independently;
countersunk screws retain shank diameters;

• Brackets: users may widen the base while keeping
mounting holes fixed—or conversely enlarge holes
without altering the base;

• Containers: mugs acquire larger radii with height con-
straints; plates are widened and deepened without rim
distortion.

C. Results on Trajectory Transfer

A transferred trajectory is defined as successful if the
gripper closes with force-closure on the mapped contacts,
lifts the object 20cm without slip, and places it within 2cm
of the target pose.

Figure 4 and Figure 5 show representative pick-and-
place executions on heavily deformed instances from two
object categories: mugs and brackets. Despite substantial
geometric changes, the robot successfully reuses the orig-
inal demonstration to perform accurate and stable place-
ments. Table I provides detailed statistics across all ob-
ject classes, reporting average success rates over the full

Fig. 5. Robot trajectory transfer on bracket rearrangement (grasp → lift
→ place). Top: original demonstration on the canonical bracket. Bottom:
retargeted trajectory on a slippage-preserving bracket variant.

range of shape augmentations. While the results demonstrate
that our slippage-preserving correspondence enables reliable,
zero-tuning trajectory transfer even under significant shape
variation, common failure cases remain. These include: (1)
grasp slippage during pickup, lifting, or placement, caused
by discrepancies in local curvature between the deformed
and original shapes; and (2) post-transfer gripper collisions
with the object, due to unexpected changes in the geometry.

IV. CONCLUSION AND FUTURE WORK

We introduced an automatic, geometry-aware
augmentation pipeline that generates large families
of slippage-preserving shape variants from a single
canonical mesh and demonstration. Future work will
extend the approach to compliant and articulated objects,
explore closed-loop simulation for contact-aware trajectory
refinement, and investigate integration with visual perception
to support end-to-end policy training and deployment in
real-world settings.
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