gg SAM2Act: Integrating Visual Foundation Model with A Memory
Architecture for Robotic Manipulation

Haoquan Fang!

Dieter Fox*!3

Abstract— Robotic manipulation systems operating in diverse,
dynamic environments must exhibit three critical abilities:
multitask interaction, generalization to unseen scenarios, and
spatial memory. While significant progress has been made
in robotic manipulation, existing approaches often fall short
in generalization to complex environmental variations and
addressing memory-dependent tasks. To bridge this gap, we
introduce SAM2Act, a multi-view robotic transformer-based
policy that leverages multi-resolution upsampling with visual
representations from large-scale foundation model. SAM2Act
achieves a state-of-the-art average success rate of 86.8% across
18 tasks in the RLBench benchmark, and demonstrates robust
generalization on The Colosseum benchmark, with only a
4.3% performance gap under diverse environmental perturba-
tions. Building on this foundation, we propose SAM2Act+, a
memory-based architecture inspired by SAM2, which incorpo-
rates a memory bank, an encoder, and an attention mechanism
to enhance spatial memory. To address the need for evaluating
memory-dependent tasks, we introduce MemoryBench, a novel
benchmark designed to assess spatial memory and action
recall in robotic manipulation. SAM2Act+ achieves competitive
performance on MemoryBench, significantly outperforming
existing approaches and pushing the boundaries of memory-
based robotic systems. Project webpage: sam2act.github.io.

I. INTRODUCTION

Training Data

Generalization
b/ -
B Wl

Fig. 1: SAM2Act is a multi-view, language-conditioned
behavior cloning policy trained with fewer demonstrations.
Given a language instruction, it can execute high-precision
tasks, such as turning the tiny knob on the lamp. It also
generalizes to various environmental variations, such as
changes in lighting conditions. Through further training
with our proposed memory architecture, it now evolves into
SAM2Act+, which is now capable of solving tasks that require
implicit spatial memory—such as remembering where the
robot previously stored the pliers, as depicted in the above
figure.

*Equal advising

I University of Washington

2Universidad Catélica San Pablo
SNVIDIA

4 Allen Institute for Artificial Intelligence

Markus Grotz!
Ranjay Krishna

Yi Ru Wang!
*1,4

Wilbert Pumacay?
*14 " Jiafei Duan

The world in which we live is diverse and constantly
changing, encompassing a wide variety of objects, scenes,
and environmental conditions. Consider the seemingly simple
task of following a recipe when cooking: we can seamlessly
perform the action of picking it up and sprinkling it into
the pan, recognize salt even if it comes in different types
of container, and remember whether we have already added
salt. Humans excel in such environments because they can
interact with their surroundings to achieve specific goals,
generalize to unseen scenarios, and retain knowledge from
past experiences [1]. These abilities—multitask interaction,
generalization, and memory—serve as guiding principles for
developing robotic systems capable of operating in similarly
complex environments.

Significant progress has been made in robotic manipulation
through prior work. Early methods, such as the Transporter
Network [2] and CLIPort [3], demonstrated effective 2D
action-centric manipulation but were limited in their ability
to handle spatially complex tasks. More recent approaches,
such as PerAct [4] and RVT [5], have pushed toward 3D-based
manipulation. PerAct employs a multitask transformer that
interprets language commands and predicts keyframe poses,
achieving strong results across a variety of tasks. RVT builds
on this foundation by adopting a 2.5D representation, im-
proving training efficiency and inference speed. Its successor,
RVT-2, further enhances performance with a coarse-to-fine
strategy, increasing precision for high-accuracy tasks. Despite
these advances, important challenges remain, including im-
proving multitask performance, enhancing generalization to
novel environment configurations, and integrating memory
mechanisms for tasks requiring episodic recall.

We introduce SAM2Act, a multi-view robotics transformer-
based policy that enhances feature representation by inte-
grating multi-resolution upsampling with visual embeddings
from large-scale foundation models. Built on the RVT-2
multi-view transformer, SAM2Act achieves strong multitask
success and generalization. Building on this foundation,
we introduce SAM2Act+, which incorporates a memory-
based architecture inspired by SAM2’s approach. Using a
memory bank, an encoder, and an attention mechanism,
SAM2Act+ enables episodic recall to solve spatial memory-
dependent manipulation tasks. We evaluate SAM2Act and
SAM2Act+ using RLBench 18 tasks [6], The Colosseum
[7], MemoryBench, and real-world tasks, where our methods
all achieve state-of-the-art performance.

https://sam2act.github.io/

II. RELATED WORK
A. 3D-based Robotic Transformer for Manipulation

2D-based methods [8], [9], [2], [10], [3] are effective
for simple pick-and-place tasks due to fast training, low
hardware requirements, and minimal computational cost.
However, they depend on pretrained image encoders and fail
in tasks requiring high precision, robust spatial interaction, or
resilience to environmental and camera variations [7]. Recent
work addresses these limitations with 3D perception. Methods
like PolarNet [11], M2T2 [12], and Manipulate-Anything [13]
reconstruct point clouds, while C2F-ARM [14] and PerAct
[4] use voxel-based 3D representations. Act3D [15] and
ChainedDiffuser [16] adopt multi-scale 3D features. RVT [5]
introduces 2.5D multi-view images for faster training, refined
by RVT-2 [17] with a coarse-to-fine architecture for improved
precision. Our work, SAM2Act, combines RVT-2’s spatial
reasoning with enhanced virtual images from the SAM2 visual
encoder, achieving high precision and generalization across
diverse tasks.

B. Visual Representations for Robot Learning

Robotics research heavily relies on visual representations
from computer vision to process high-dimensional inputs and
improve policy learning. Visual representations are integrated
into robot learning through pre-training [18], [19], [20], co-
training [21], [22], [23], [24], or frozen encoders [25], [26],
[27], all of which effectively support policy training. These
representations also enhance invariance, equivariance, and
out-of-distribution generalization [28], [7], [29]. SAM-E [27]
demonstrates the use of a pre-trained SAM encoder for
robotic manipulation by leveraging image embeddings for
policy learning. Expanding on this, our approach employs
the SAM2 visual encoder to generate image embeddings for
robotic transformers and utilizes its multi-resolution features
to improve convex upsampling for next-action prediction.

C. Memory in Robotics

Memory is a fundamental component of human cognition,
and equipping generalist robotic agents with episodic and
semantic memory is crucial for enabling them to perform
complex tasks effectively [30]. Early research on memory
in robotics primarily addressed navigation tasks, relying on
semantic maps that were often constrained in scope [31],
[32], [33]. Other work explicitly model the memory and its
representation for a robot cognitive architecture [34]. Recent
advancements leverage representations derived from vision-
language models (VLMs) and Large Vision Models (LVMs),
utilizing voxel maps or neural feature fields to encode, store,
and retrieve information [35], [36], [13], [37]. Alternative
methods represent semantic memory for manipulation tasks
using Gaussian splats to encode spatial information [38],
[39]. In contrast, our approach draws inspiration from
the framework of Partially Observable Markov Decision
Processes (POMDPs) [40], incorporating memory directly
into the training process. By integrating spatial memory from
past actions into the agent’s belief state, we enhance the
robustness and adaptability of learned policies.

III. MEMORYBENCH: A MEMORY BENCHMARK FOR
ROBOTIC MANIPULATION

We introduce MemoryBench, a benchmark designed to
systematically evaluate the spatial memory capabilities of

robotic manipulation policies. In [subsection III-A|l we begin

by outlining the logic and rules behind task design. We will

then describe the tasks we have developed in

A. Task Design

Unlike standard RLBench tasks [6], many of which involve
long-horizon scenarios, our tasks are specifically designed
to require spatial memory. Without such memory, the agent
would be forced to rely on random actions. To create these
tasks, we intentionally violate the Markov assumption, which
states that in a Markov Decision Process (MDP), the next
observation depends solely on the current observation and
action:

P(0t+1 | 01,a1,~~,0t,<1t) = P(0t+1 | Otaat)'

This assumption implies that knowing only o; and a; is
sufficient to predict o;41. However, in our tasks, we design
scenarios where two distinct action histories lead to the same
observation oy, but require different subsequent actions. This
forces the agent to recall which action history led to o; to
perform the correct next action. Furthermore, we standardized
the language instructions to prevent unintentional leakage of
spatial information that could aid the model in memory-based
tasks. These principles guided the development of our spatial
memory-based tasks.

B. Spatial Memory-based Tasks

MemoryBench extends the RLBench simulator to
provide scripted demonstrations for three spatial mem-
ory tasks: reopen_drawer, put_block_back, and
rearrange_block. Each task is designed to evaluate a
specific aspect of spatial memory and adheres to the principles
outlined in Section To introduce complexity, these tasks
include two to four variations and additional steps—such as
pressing a button mid-sequence—that disrupt the Markov
property. This forces the agent to rely on memory rather than
solely on immediate observations. Please find more details

of those tasks in

IV. METHOD

Our method, SAM2Act, enables precise 3D manipulation
with strong generalization across environmental and object-
level variations. Building upon the RVT-2 framework [17],
SAM2Act introduces key architectural innovations that en-
hance visual feature representation and task-specific reasoning.
The architecture reconstructs a point cloud of the scene,
renders it from virtual cameras at orthogonal views, and
employs a two-stage multi-view transformer (coarse-to-fine)
to predict action heatmaps. The coarse branch generates zoom-
in heatmaps to localize regions of interest, while the fine
branch refines these into precise action heatmaps. SAM2Act
leverages the pre-trained SAM2 encoder [41] to extract
multi-resolution image embeddings, which are further refined

through the multi-resolution upsampling technique to predict
accurate translation heatmaps with minimal information
loss. To address tasks requiring spatial memory, SAM2Act+
extends the SAM2Act architecture by incorporating memory-
based components. These include Memory Bank, Memory
Encoder, and Memory Attention, enabling the model to
encode historical actions and condition current observations.
This memory-based policy enhances the agent’s ability
to predict actions based on past contextual information,
significantly improving performance in tasks that require
sequential decision-making.

In the following sections, we detail the SAM2Act architec-
ture (subsection IV-A), including its multi-resolution upsam-
pling mechanism (Figure 3). We also present the SAM2Act+
extension, which integrates memory-based components for

solving spatial memory tasks (subsection IV-B).

A. SAM2Act: Multi-Resolution Upsampling for Enhanced
Visual Feature Representation

SAM2Act for General
Stage 1 SAM2Act Module (Coarse)

Input
o0
r
samz £3 35
$

ion Tasks

Output
Next Grpper Sate
go A &

&

[g

SAM2Act+ for Memory-Specific Tasks
SAM2Act+ Module (Coarse)

Stage 2

Frozen Finetuned

Output

Next Griper State

(Sequential)
7620

==

TR
e

-

Fig. 2: Overview of the SAM2Act (top) and SAM2Act+
(bottom) architectures. The SAM2Act architecture leverages
the SAM2 image encoder to generate prompt-conditioned,
multi-resolution embeddings, fine-tuned with LoRA for
efficient adaptation to manipulation tasks. A multi-view
transformer aligns spatial coordinates with language in-
structions, while a cascaded multi-resolution upsampling
mechanism refines feature maps and generates accurate
translation heatmaps. SAM2Act+ extends this architecture
by incorporating memory-based components, including the
Memory Encoder, Memory Attention, and Memory Bank, into
the coarse branch. These components enable memory-driven
reasoning by processing historical heatmaps and integrating
prior observations, allowing the agent to predict actions
based on stored contextual information. Observations are
reconstructed into point clouds, rendered into three virtual
images, and lifted into 3D translation points, enabling precise
spatial reasoning across both architectures.

A distinctive feature of SAM2Act is the incorporation
of the SAM2Act Module into the manipulation backbone
for training, as illustrated in The coarse and fine
SAM2Act Modules share the same architecture, with the fine
branch generating additional features to predict actions beyond
translation, while the coarse branch focuses exclusively on

Multi-Resolution Upsampling

Fig. 3: SAM2Act Module and multi-resolution upsampling
mechanism. A cascade of three convex upsamplers processes
feature maps at increasing resolutions, integrating multi-
resolution embeddings from the SAM2 image encoder through
elementwise addition and layer normalization. The upsamplers
progressively refine features, doubling spatial dimensions at
each stage, to generate accurate translation heatmaps while
capturing fine-grained spatial details critical for manipulation
tasks.

translation. Point-cloud representations are reconstructed from
raw image inputs, and virtual images are generated from three
viewpoints using virtual cameras. Instead of directly inputting
these images into the multi-view transformer, their RGB
channels are duplicated and processed by the SAM2 [41]
image encoder, which produces object-centric multi-resolution
embeddings. These embeddings, generated at three resolution
levels, are combined with virtual images containing RGB,
depth, 3D translation coordinates, and language instructions
before being fed into the multi-view transformer. Details of

how we adapt the MVT can be found in

B. SAM2Act+: Action Memory Architecture for Improved
Spatial Awareness in Past Observations

To extend the SAM2Act architecture (subsection IV-Al
with memory-based capabilities inspired by SAM2, we

introduce SAM2Act+, a task-specific variant designed for
solving memory-based tasks. SAM2Act+ integrates the three
core memory components from SAM2—~Memory Attention,
Memory Encoder, and Memory Bank—into the coarse branch
of SAM2Act. Originally developed for object tracking in
SAM2, these components are adapted to align with the needs
of SAM2Act+, enabling the agent to retain prior actions and
observations for sequential decision-making. In SAM2, the
Memory Encoder processes predicted object masks, while the
Memory Attention module fuses image embeddings with
positional information from previous frames. SAM2Act+
adopts a similar structure: the predicted heatmaps, which serve
as binary indicators of spatial positions in the image, function
analogously to object masks. This conceptual alignment
ensures a seamless integration of memory mechanisms,
allowing the agent to leverage stored information to predict
subsequent actions based on historical context. A detailed
description of the Memory Attention and Memory Encoder
modules can be found in [section VIIl For more SAM2Act+’s
architecture and training details, please refer to

V. EXPERIMENTS

We study SAM2Act and SAM2Act+ in both simulated and
real-world environments. Specifically, we are interested in
answering the following questions:

§ How does SAM2Act compare with state-of-the-art 3D
manipulation policies?

§ Can SAM2Act generalize across object and environmen-
tal perturbations?

§ [V=D] Can SAM2Act+ solve spatial memory-based tasks that
other baselines cannot?

§ How well does SAM2Act and SAM2Act+ perform on
real-world tasks?

A. Experimental Setup

We benchmark SAM2Act in both simulated and real-world
environments. The simulated environments serve as a con-
trolled platform to ensure reproducible and fair comparisons.
The real-world experiments demonstrate the applicability of
the method to real-world settings. Setup details could be
found in [section XII| and [section XV} Training details can be
found in

B. Performances Across 18 RLBench Tasks

compares SAM2Act with prior keyframe-based
3D BC methods on the RLBench benchmark. Overall,
SAM2Act achieves an average success rate of 86.8% +0.5,
surpassing the previous best (RVT-2) by 5.4%. A closer
look at individual tasks reveals that SAM2Act ranks first
in 9 out of 18 tasks and remains highly competitive in 7
others, coming within one successful attempt or 4% of
the best performance. These tasks include Close Jar, Drag
Stick, Meat Off Grill, Place Wine, Screw Bulb, Sweep to
Dustpan, and Turn Tap. The largest margin of improvement
occurs in Insert Peg, where SAM2Act exceeds RVT-2
by 44% (approximately 2.1x), and in Sort Shape, where
it outperforms RVT-2 by 29%. Both tasks require precise
manipulation, underscoring the effectiveness of SAM2Act’s
multi-resolution upsampling strategy. These results establish
SAM2Act as a leading policy for complex 3D tasks,
highlighting its ability to handle high-precision manipulations
- an area where prior methods have struggled. Ablation studies

are performed on SAM2Act in
C. Semantic Generalization across Tasks

The results evaluated in were obtained
by training and testing models within the same environ-
ment. However, to truly assess generalization performance,
policies must remain robust against both environmental and
object-level perturbations. We therefore trained SAM2Act and
the baseline methods on 20 tasks from The Colosseum
benchmark and tested them under 13 different perturbation
categories over three runs. SAM2Act exhibits the smallest
performance drop compared to the baselines, with an aver-
age decrease of 4.3% (standard deviation of 3.59%). Notably,
it proves particularly robust to environmental perturbations —
such as changes in lighting, table color/texture, the addition
of distractors, and even camera pose — while also maintaining

competitive performance under object-level perturbations (see

more analysis in [Fubsection TXB).

D. Performance on MemoryBench

In we evaluate SAM2Act+ against SoTA 3D
BC model, RVT-2 on MemoryBench, training all models
in a single-task setting to isolate memory-related challenges
(e.g., opening the wrong drawer rather than unrelated mid-task
failures). This setup ensures that performance differences stem
from memory capabilities. For a random agent, the expected
success rates are determined by the number of possible
choices per task: 33% for reopen_drawer (three drawers),
25% for put_block_back (four patches), and 50% for
rearrange_block (two blocks). However, variations in
task complexity, fixed training data, and imbalanced task
distributions lead to slight deviations from these baselines. Our
proposed memory-based model, SAM2Act+, demonstrates
a strong understanding of spatial memory, achieving an
average success rate of 94.3% across all tasks. It outperforms
SAM2Act (without memory) by a huge margin of 39.3%
on MemoryBench, highlighting the significant impact of
explicit memory modeling.

E. Real-robot Evaluations

presents our real-world experiment results, where
our method achieves a 75% task success rate, compared
to 43% for RVT-2. SAM2Act significantly outperforms the
baseline in high-precision tasks (60% vs 0%). It excels
in memory-based tasks, such as (d) Push the same
button, which requires recalling the button’s previous
location. Here, SAM2Act achieves 70% success, while RVT-2,
relying on random guessing, scores 40%. We also test models’
generalization against perturbations like lighting changes,
distractors, and position variations. Additional details are in
the with real-world rollout videos available on
our project website.

VI. CONCLUSION & LIMITATION

We introduce SAM2Act, a multi-view, language-
conditioned behavior cloning policy for 6-DoF 3D manip-
ulation, enabling high-precision manipulations while gen-
eralizing effectively to unseen perturbations. Building on
this foundation, we propose SAM2Act+, a memory-based
multi-view language-conditioned robotic transformer-based
policy that equips the agent with spatial memory awareness,
allowing it to solve spatial memory-based tasks. While both
SAM2Act and SAM2Act+ achieve SOTA performance across
multiple benchmarks, challenges remain in extending them to
dexterous continuous control. Additionally, SAM2Act+ relies
on a fixed memory window length, which differs from task
to task, limiting its adaptability to tasks of varying length.
We also examined whether our memory architecture could
retain semantic information (e.g., color), but unfortunately, it
appears to be limited to storing spatial information. Despite
these challenges, we believe SAM2Act+ is an important step
towards memory-based generalist manipulation policies.

APPENDIX
VII. MODEL ARCHITECTURE

We will explain our model architecture in detail, including
Multi-View Transformer, Memory Attention, Memory En-
coder, and Memory Bank. The multi-resolution is already
explained in

Multi-View Transformer. The two MVTs used in the
coarse and fine branches have the same architecture. Very
similar to the MVT proposed by [5], the input to the
transformer consists of a language description of the task,
virtual images of the scene point cloud, and the image
embeddings (at the lowest resolution) generated by the SAM?2
image encoder. The text is transformed into token embeddings
using the pre-trained CLIP [42] model, while the virtual
images are converted into token embeddings through patchify
and projection operations. Similarly, the image embeddings
are converted into token embeddings via a projection layer.
For each virtual image, tokens corresponding to the same
image are processed through four attention layers. Finally,
the processed image tokens, along with the language tokens,
are jointly processed using an additional four attention layers.
The resulting image tokens are then used to infer the 3D
action.

Memory Attention. Akin to the memory attention in
SAM?2 [41], the purpose of this module is to condition the
current observation features on both past observation features
and predicted actions, specifically translation. Notably, fea-
tures from each view are processed independently. We stack
four transformer blocks, with the first one taking the image
embedding output of MVT from the current observation
as input. Each block applies self-attention, followed by
cross-attention to memories of past observation features and
predicted actions, stored in a memory bank (described below),
and ends with a multi-layer perceptron (MLP). For both
self- and cross-attention, we use vanilla attention operations,
enabling us to leverage recent advances in efficient attention
kernels [43]. In addition to sinusoidal absolute positional
embeddings, 2D spatial Rotary Positional Embedding (RoPE)
[44], [45] are incorporated in both self-attention and cross-
attention layers. We also reduce the dimension size from
the original 256 to 128 to align with the image embedding
dimension of the MVT output.

Memory Encoder. The memory encoder constructs mem-
ory features by downsampling the output translation heatmap
using a convolutional module and summing it element-wise
with the unconditioned observation embedding from the multi-
view transformer (not shown in [Figure 2). This is followed by
lightweight convolutional layers to integrate the information.
Instead of employing an additional image encoder, our
memory encoder reuses the image embeddings produced
by the MVT (not the SAM2 image encoder) and fuses them
with the predicted translation information to generate memory
features. This design enables the memory features to leverage
rich representations that incorporate language, semantic, and
spatial features from multiple views, making them more
suitable for encoding action memories. Originally, this module

Algorithm 1 Forward Pass of SAM2Act+ Module

1: Initialize: Number of steps /N, maximum number of
memories M, number of views V', empty memory bank
Q@ with V separate FIFO queues, input X

2: fori=1to N do

3: for j=1toV do

4: Get embeddings &4, from MVT T,,,,,(X;)

5: Retrieve past memories Mg from Q[j]

6: Get memory-conditioned embeddings &,,¢p, from
Memory Attention Tyem (Eraw, Moid)

7: Predict translation heatmap H with upsampler
U(gmem)

8: Encode new memory M, using Memory En-
coder Epem(H, Eraw)

9: Store new memory Q[j] + Q[j] U {Mupew}

10: if |Q[j]| = M then

11 Q[]] — Q[]]Zn

12: end if

13: end for

14: end for

was designed to encode an image embedding with multiple
object masks within the same frame. However, we do not
utilize this functionality. Instead, we encode one memory per
view, where each memory is generated by encoding a single
heatmap with a corresponding image embedding from each
view.

Memory Bank. The memory bank preserves past trans-
lation predictions associated with previous observations in
the video by maintaining a FIFO queue of up to N recent
memories. Each view has its own independent memory bank,
as memories are stored and retrieved separately for different
views. These memories are represented as spatial feature maps.
Additionally, in our memory bank, the memory features are
projected to a dimension of 64.

VIII. TRAINING IMPLEMENTATION

All models are trained on 32 NVIDIA H100/A100 GPUs.
In some cases, we also train on 16 or 8 NVIDIA H100/A100
GPUs, but we ensure fairness by maintaining the same total
batch size across all settings.

A. SAM2Act

We use the same way to data and demo augmentation
methods and training pipeline as in RVT2 [17] to train
SAM2Act (stage 1). The training hyperparameters are shown
in We use this set of hyperparameters to train on
RLBench and The Colosseum.

B. SAM2Act+

We use a different strategy for sampling a batch of data for
training. Previous sampling strategies randomly select a batch
of independent observations, allowing the model to predict
the next action based on each observation independently.
However, for SAM2Act+, we aim for the agent to predict the
next action based on both the current and past observations.

TABLE I: Training Hyperparameters of SAM2Act on RL-
Bench and The Colosseum. The batch size stands for total
batch size across all GPUs. For the learning rate, we follow
the scaling strategy used in RVT2 [17], where the learning
rate is scaled by the batch size as 1.25e — 5 X bs.

Hyperparameters SAM2Act Training
batch size 256
learning rate 3.2e-3
optimizer LAMB
learning rate schedule cosine decay
weight decay le-4
warmup steps 2000
training steps 56.25K
training epochs 90
LoRA rank 16

To achieve this, we must sample a batch of data that is
spatio-temporally consistent. To implement this, we randomly
sample n consecutive observations from a random episode.
The forward pass is then performed sequentially from the
first to the last observation. The details of the forward pass
are provided in

When adopting this new sampling method during training,
one immediate effect is a significant reduction in data diversity
per batch. This can be detrimental, especially when dealing
with tasks with numerous variations. We attempted to train the
standard SAM2Act model on RLBench tasks using this new
sampling method, but the convergence time was excessively
long. To address this, we propose a new training pipeline: first,
we pre-train the model using the previous sampling method,
then fine-tune it with the new sampling approach. This
strategy effectively mitigates the issue of slow convergence,
significantly reducing training time.

As mentioned in we train all methods on
MemoryBench in a single-task setting. However, finding a
training configuration that optimizes all tasks is challenging.
To address this, we use a universal set of hyperparameters
for training but evaluate models across all epochs and select
the best-performing one for evaluation. We follow the same
approach to determine the optimal pre-trained weights for
SAM2Act before fine-tuning on SAM2Act+. In addition, the
window size of the memory mechanism is fixed to be 10 in
all tasks in MemoryBench. We keep the batch size the same
as the window size during training, and thus the learning rate
will be a bit different as they are related with batch size. The
detailed training hyperparameters are listed in

IX. ABLATION ON SAM2ACT
A. RLBench

We conduct ablation experiments on the proposed
SAM?2Act, focusing on two key aspects: the SAM?2 image
Encoder and multi-resolution upsampling. We evaluate the
model under three different configurations:

(i) Replacing the SAM?2 image encoder with the SAM
image encoder and removing the multi-resolution upsampling,
as the SAM image encoder does not produce multi-resolution
outputs. (ii) Replacing the multi-resolution upsampling with

TABLE II: Training Hyperparameters of SAM2Act and
SAM2Act+ on MemoryBench. Note that the batch size
refers to the total batch size across all GPUs. For SAM2Act+,
we use a maximum window size of 10 across all tasks,
resulting in a per-GPU batch size of 10 and a total batch size
of 10 x 32 = 320. The learning rate follows the same scaling

rule mentioned in

Hyperparameters SAM2Act Training ~ SAM2Act+ Training
batch size 256 320
learning rate 3.2e-3 4e-3
optimizer LAMB LAMB
learning rate schedule cosine decay cosine decay
weight decay le-4 le-4
warmup steps 2000 2000
training steps 6.25K 12.5K
training epochs 10 20
LoRA rank 16 16

the original convex upsampling from RVT-2 [17]. (iii)
Removing SAM2’s multi-resolution image embedding inputs
to the multi-resolution upsampling while keeping the multi-
resolution upsampling itself.

Note that SAM-E [27] proposed a 3D behavior cloning
policy that integrates RVT and the SAM image encoder,
along with an action-sequence policy head. We attempted to
extend this method to the more powerful RVT2 backbone
for comparison. However, its action-sequence policy proved
incompatible with the coarse-to-fine pipeline, resulting in very
slow convergence under SAM-E’s training setup. To ensure a
fair comparison, we also extended SAM-E while keeping its
original hyperparameters (notably, a LoRA rank of 4, whereas
ours is 16). We trained both versions and found that SAM-E’s
configuration performed better. Therefore, we adopted their
configuration and reported the results accordingly, which also
applies to For all other ablation experiments,
the training configuration are kept the same.

Ablation results on RLBench are presented in
All three variants of SAM2Act exhibit lower performance
than the original version. Removing SAM2’s multi-resolution
image embedding inputs results in a 1.1% drop in the
average success rate. Replacing the entire multi-resolution
upsampling with the original convex upsampling leads to a
2.6% decrease. Substituting the SAM?2 image encoder with
the SAM image encoder causes a 6.0% drop compared to
SAM2Act and a 3.4% drop compared to SAM2Act with
the original convex upsampling—where the only differences
are the image encoder and some training hyperparameters.
These results indicate that all of our architectural innovations
significantly enhance the agent’s ability across multiple
manipulation tasks.

B. The Colosseum
We also conducted the same ablation experiments on The
Colosseum generalization benchmark, as shown in

The experimental setup remains the same as in
except that we did not test the variant of SAM2Act with the

original convex upsampling. The results in [Table III| show

TABLE III: SAM2Act Abaltion Performance on RLBench. We report the success rates for 18 RLBench tasks [6], along
with the average success rate and ranking across all tasks. Table shows that SAM2Act outperforms all of its variations.

Method Avg. Success T Avg. Rank | Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons
SAM2Act (SAM2 — SAM) 808 £ 1.9 2.8 96.0 + 3.3 94.0 + 4.0 28.0 + 8.6 98.0 + 23 720+ 73 420+ 69 95.0 + 3.8 100.0 + 0.0
SAM2Act (Original Upsampling) 842 £ 09 2.7 100.0 = 0.0 100.0 0.0 91.0 + 3.8 99.0 + 2.0 78.0 £ 9.5 29.0 + 6.0 88.0 £ 5.7 96.0% 0.0
SAM2Act (w/o Multi-res Input) 857+ 03 2.1 99.0 2.0 96.0 & 0.0 86.0 = 8.3 98.0 + 23 99.0 + 2.0 43.0 £10.5 96.0 + 0.0 100.0 + 0.0
SAM2Act 86.8 + 0.5 1.8 99.0 + 2.0 99.0 + 2.0 84.0 £ 5.7 98.0 + 2.3 83.0 + 6.0 47.0 + 6.0 93.0 + 3.8 100.0 + 0.0
Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap
SAM2Act (SAM2 — SAM) 72.0 &+ 8.6 940 £ 23 99.0 + 2.0 920 £5.7 97.0 + 3.8 41.0 £ 3.8 73.0 £ 38 71.0 £ 20 96.0 + 3.3 95.0 £ 2.0
SAM2Act (Original Upsampling) 69.0 + 5.0 98.0 + 23 96.0 + 3.3 84.0 + 3.3 99.0 + 2.0 520+ 33 71.0 + 3.8 80.0 + 3.3 99.0 + 2.0 87.0 + 6.0
SAM2Act (w/o Multi-res Input) 720 + 4.6 100.0 + 0.0 96.0 + 4.6 87.0 2.0 820+ 52 540 +£52 740 £ 23 90.0 + 6.9 97.0 + 3.8 92.0 + 4.6
SAM2Act 750 £ 3.8 99.0 + 2.0 98.0 23 89.0 2.0 86.0 + 4.0 64.0 = 4.6 76.0 + 8.6 78.0 + 4.0 99.0 + 2.0 96.0 + 5.7

that removing SAM2’s multi-resolution image embedding
inputs leads to a 14.8% drop in performance, representing a
relative decrease of 344.2%. This highlights the effectiveness
of SAM2’s multi-resolution image embeddings in provid-
ing robust visual representations, significantly enhancing
SAM2Act’s generalization ability.

X. RESULTS
XI. MEMORYBENCH UPDATE

We updated the reopen_drawer task in
MemoryBench for the following reasons. During training
on the original data, we observed that the gripper often
collided with the drawer handle when closing the drawer.
To prevent this, we introduced an additional waypoint
for the closing motion, mirroring the procedure used for
opening the drawer. Consequently, we retrained all policies
specifically on this updated task. Furthermore, to standardize
the memory window size across all three tasks, we also
retrained SAM2Act+ on this task using a window size of 10,
which led to improved performance. All results are updated

to [Table VII
XII. RLBENCH TASKS

We follow the multi-task, multi-variation simulated ex-
periment setup of PerAct [4], RVT [5], and RVT-2 [17],
using 18 RLBench tasks with 249 unique variations in object
placement, color, size, category, count, and shape. A summary
of the 18 RLBench tasks is provided in For a
more detailed description of each task, please refer to PerAct

[4].

XIII. OVERVIEW OF MEMORYBENCH TASKS AND
REAL-WORLD TASKS

XIV. MEMORYBENCH TASKS

In the following we provide details of the MemoryBench
tasks.

(a) Reopen drawer

Task Description: The robot is instructed remember the
drawer slot that was initially opened, and closed it and
then press the button on the table, before finding back the
previously opened drawer to re-open it.

Success Metric: The task is considered successful once
the initial opened drawer has been re-opened.

Objects: A drawer and button.

Variation Number: 3

Keyframes: 8

Language Instructions: "Close the drawer, then reopened
the previously opened drawer while pushing the button in
between."

(b) Put block back

Task Description: The robot is instructed move the block
the centre, then push the button, then move the block back
to its initial position.

Success Metric: The task is considered successful once
the initial block has been moved back to its initial pose.

Objects: Four patch, one block and one button.

Variation Number: 4

Keyframes: 11

Language Instructions: ""Put the block to the centre and
then back to its initial position while pushing the button in
between.""

(c) Rearrange block

Task Description: The robot is instructed move the block
in the centre to the empty patch, and then press the button,
and then move the alternative block to the centre..

Success Metric: The task is considered successful once
the alternative block has been moved to the centre.

Objects: Two patch, two blocks and one button.

Variation Number: 2

Keyframes: 10

Language Instructions: "Move the block not on the patch
to the empty patch, then press the button, then move the block
that has not been moved off the patch.”

XV. REAL-WORLD EXPERIMENTS

In the following we provide details of the real-world setup

and tasks. illustrates the real-world setup.

summarizes the properties of the real-world tasks.

(a) Turn on the lamp

Task Description: The robot is instructed to turn on a
lamp by rotating its knob.

Success Metric: The task is considered successful once
the lamp has been turned on by rotating the knob.

Objects: A single lamp.

Coordination Challenges: High precision is required to
properly rotate the knob.

Language Instructions: "Turn on the lamp."

TABLE IV: Multi-Task Performance on RLBench. We report the success rates for 18 RLBench tasks [6], along with the
average success rate and ranking across all tasks. Our method, SAM2Act, outperforms all baselines, achieving a significant
performance margin of 5.8% over RVT-2 [17], the current state-of-the-art 3D keyframe-based behavior cloning (BC) policy.

Method Avg. Success 1 Avg. Rank | Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons
PerAct [4] 494 £43 4.6 552+ 47 89.6 + 4.1 5.6 £4.1 704 + 2.0 88.0 £ 5.7 24 £32 448 £7.8 92.8 + 3.0
RVT [5] 629 £ 3.7 3.6 52.0 £ 2.5 99.2 + 1.6 112 £ 3.0 88.0 £ 25 712 £ 69 4.0 +25 91.0 £ 5.2 100.0 £+ 0.0
RVT-2 [17] 814 £ 3.1 1.9 100.0 £ 0.0 99.0 £ 1.7 40.0 = 0.0 99.0 + 1.7 74.0 £ 11.8 38.0 £ 45 95.0 £ 3.3 100.0 £ 0.0
SAM-E [27] 70.6 = 0.7 2.6 824 +£36 1000 £0.0 184+ 46 952 £33 952 + 52 0.0 £ 0.0 944 + 4.6 100.0 + 0.0
SAM2Act (Ours) 86.8 + 0.5 1.8 99.0 £+ 2.0 99.0 + 2.0 84.0 + 5.7 98.0 + 2.3 83.0 + 6.0 47.0 + 6.0 93.0 £+ 3.8 100.0 + 0.0
Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap
PerAct [4] 28.0 + 44 512+ 47 84.0 £ 3.6 176 £2.0 740 £ 13.0 16.8 £ 4.7 264 + 32 24 £20 52.0 £ 0.0 88.0 + 4.4
RVT [5] 49.6 + 3.2 88.0 £ 5.7 91.2 £ 3.0 48.0 £ 5.7 81.6 £ 54 36.0 £ 25 28.8 £ 3.9 264 £+ 82 72.0 £ 0.0 93.6 £ 4.1
RVT-2 [17] 66.0 + 4.5 96.0 = 0.0 96.0 + 2.8 88.0 & 49 920 £ 2.8 350+ 7.1 80.0 + 2.8 69.0 = 5.9 100.0 £ 0.0 99.0 + 1.7
SAM-E [27] 64.0 + 2.8 920 £ 5.7 952 +33 784 £ 3.6 952+ 1.8 344 £ 6.1 264 + 4.6 0.0 £ 0.0 100.0 £ 0.0 100.0 + 0.0
SAM2Act (Ours) 75.0 + 3.8 99.0 + 2.0 98.0 + 2.3 89.0 + 2.0 86.0 £ 4.0 64.0 + 4.6 76.0 £ 8.6 78.0 + 4.0 99.0 £ 2.0 96.0 £ 5.7

TABLE V: The Colosseum results. Task-average success rate percentage change for SAM2Act and other baselines across
13 perturbation factors from The Colosseum, relative to evaluations without perturbations. Our approach, SAM2Act,
demonstrates the lowest average percentage change across all perturbations, with a minimal drop of -4.34+3.6%, highlighting
its robustness in handling various environmental and object-level perturbations.

Method Average 1 MO-Color 1 RO-Color 1 MO-Texture 1 RO-Texture 1 MO-Size 1 RO-Size 1
RVT-2 [17] -19.5+2.8 -20.7£1.0 -11.84+0.8 -13.3+4.6 -11.44+3.7 -13.243.1 -17.7+0.1
SAM2Act (SAM2 — SAM) -20.7+1.2 -26.1+0.7 -15.7+2.9 -15.0+3.3 -16.54+6.2 -18.7+1.9 -19.8+1.3
SAM2Act (w/o Multi-res Input) -19.1+4.5 -15.5+6.4 -13.5+4.6 -20.4+0.5 -16.61+6.1 -21.347.5 -12.6+7.5
SAM2Act (Ours) -4.3+3.6 -1.1+£2.5 -0.7+7.2 -3.3+24 24.72+6.1 -15.945.0 0.9+6.8
Method Light Color 1+ Table Color © Table Texture 1 Distractor 1 Background Texture T Camera Pose T All Perturbations 1
RVT-2 [17] -15.6+1.3 -26.5+4.4 -14.6+4.4 -4.9453 -4.4+4.0 -19.54£2.8 -77.9+1.7
SAM2Act (SAM2 — SAM) -16.3+1.2 -23.54+5.3 -12.3+3.1 0.6£2.9 -5.4+32 -20.7£1.2 -79.5+2.5
SAM2Act (w/o Multi-res Input) -7.243.6 -18.3+6.1 -17.5+3.3 -4.6+3.5 -5.7£3.5 -19.1+4.5 -73.8 £2.2
SAM2Act (Ours) 4.5+4.4 11425 -3.7+5.2 1.7+1.7 -1.5+2.7 -4.3+3.6 -58.3+4.4

TABLE VI: Performance on MemoryBench. We report
the success rates for the three spatial memory tasks in
MemoryBench. Our method, SAM2Act+, significantly out-
performs all baseline methods that lack an explicit memory
mechanism, achieving an average improvement of 37.6%
across all three tasks. Note that there is an update with

MemoryBench, see more in [section XI

(b) Put Block Back

Methods / Tasks Avg. Success T (a) Reopen Drawer (c) Rearrange Block

RVT-2 540453 60.0 £ 0.0 500 £23 520 £33
SAM2Act (Ours) 55.0 +£24.3 48.0 £ 0.0 350 £38 820 £23
SAM2Act+ (Ours) 94.3 + 9.0 84.0 £ 0.0 100.0 £+ 0.0 99.0 + 2.0

TABLE VII: Real-world results. We compare RVT?2 against
SAM2Act for the first three tasks and SAM2Act+ on the last
real-world tasks (indicated with *), evaluating performance
both in-distribution and out-of-distribution during test time.

In-Distribution Out-Distribution

Task RVT-2 SAM2Act RVT-2 SAM2Act
(a) turn on the lamp 0/10 6/10 0/10 6/10
(b) push button sequence 4/10 9/10 1/10 9/10
(c) stack cubes 8/10 8/10 3/10 3/10
(d) push the same button * 4/10 7710 2/10 6/10

(b) Push buttons in sequence

Task Description: The robot must press the red button
first and then the blue button.

Success Metric: The task is considered successful if the
buttons are pressed in the specified order: red, then blue. A
third button is present but should remain unpressed.

Objects: Three buttons in front of the robot.

Coordination Challenges: Ensuring the robot presses the
correct buttons in sequence without pressing the third button.

Language Instructions: "Push the red button and then
the blue button.”

(c) Stack blocks

Task Description: The robot must place one specified
block on top of another specified block.

Success Metric: The task is successful if the designated
block is stacked on the correct target block.

Objects: Three single-colored blocks.

Coordination Challenges: Precision in picking and plac-
ing, plus correct language understanding to identify which
block goes where.

Language Instructions: "Stack the <item> block on the
<item> block.”

(d) Push the same button

Task Description: The robot must first identify and press
the button closest to the blue block, then press the same
button again after the block is removed.

Success Metric: The task is successful if the robot presses
the correct button twice. Pressing the other button at any
point results in failure.

Objects: Two buttons and one blue block (marking
proximity).

Coordination Challenges: After the first button press, the
blue block is removed; the robot must remember the button
location to press it again.

TABLE VIII: The 18 RLBench tasks for multi-task experiment

Task name

Language Template

Avg. Keyframes

#of Variations Variation Type

put in drawer
reach and drag
turn tap

slide to target
open drawer

put in cupboard
place in shape sorter
put money in safe
push buttons

close jar

stack block

place cups

place wine at rack
screw bulb

sweep to dustpan
insert peg

meat off grill
stack cups

“put the item in the __ drawer”

“use the stick to drag the cube onto the __ target”
“turn __ tap”

“slide the block to __ target”

“open the __ drawer”

“put the __ in the cupboard”

“put the __ in the shape sorter”

“put the money away in the safe on the __ shelf”
“push the __ button, [then the __ button]”

“close the __ jar”

“stack _ __ blocks”

“place __ cups on the cup holder”

“stack the wine bottle to the __ of the rack”
“screw in the __ light bulb”

“sweep dirt to the __ dustpan”

“put the ring on the __ spoke”

“take the __ off the grill”

“stack the other cups on top of the __ cup”

12.0
6.0
2.0
4.7
3.0
5.0
5.0
5.0
3.8
6.0
14.6
11.5
5.0
7.0
4.6
5.0
5.0
10.0

3 placement
20 color
2 placement
4 color
3 placement
9 category
5 shape
3 placement
50 color
20 color
60 color,count
3 count
3 placement
20 color
2 size
20 color
2 category
20 color

(a) Turn on the lamp

Turn on the lamp

(a) Re-open Drawer
-

"Close the drawer, then reopened the
previously opened drawer while pushing
the button in between."

MemoryBench
(b) Put Block Back

the button in between."

Real-world Tasks
(b) Push buttons in sequence

Press the red button first then the
blue button

"Put the block to the centre and then
back to its initial position while pushing

"Move the block not on the patch to the empty

(c) Rearrange Blocks

patch, then press the button, then move the block
that has not been moved off the patch"

¢) Stack blocks

Stack the blue block on the orange block

d) Push the right button

Push the button that previously had
the block in front of it twice

Fig. 4: Simulation and Real Tasks. We demonstrate the effectiveness of SAM2Act+ in solving memory-based tasks by
evaluating it against baselines on the three benchmark memory tasks (shown at the top). Additionally, we validate our
approach using a Franka Panda robot on four real-world tasks (shown at the bottom), including tests under out-of-distribution

perturbations.

Language Instructions: "Push the button that is closest

to the blue block. Press the same button again.”

ACKNOWLEDGMENT

Jiafei Duan is supported by the Agency for Science,

Technology and Research (A*STAR) National Science

Fig. 5: Robot setup. A Franka Panda robot with a Robotiq
Gripper. A RealSense D455 depth sensor captures the scene.

TABLE IX: Properties of the real-world tasks. We report on
language template, the average number of extracted keyframes,
the number of items that the robot can interact with, the task
variations and the variation type.

Task name Language template #keyframes # items # variations variation type
() turn on the lamp “turn on the lamp” 45 1 1 placement

(b) push buttons in sequence “push the red button, then the green button” 5 3 1 placement

(c) stack cubes “stack the _ cube on the __ cube” 40 5 3 categoryplacement
(d) push the right button “push the button closest to the blue block” 6 3 1 color,placement

Fellowship. Wilbert Pumacay is supported by grant 234-
2015-FONDECYT from Cienciactiva of the National Coun-
cil for Science, Technology and Technological Innovation
(CONCYTEC-PERU). This project is partially supported by
Amazon Science. We would also like to thank Winson Han
from the Allen Institute for Artificial Intelligence for helping
with the figure and icon design, and Jieyu Zhang from the
University of Washington for assisting with the design of
model architecture and training pipeline.

References are important to the reader; therefore, each
citation must be complete and correct. If at all possible,
references should be commonly available publications.

REFERENCES

[1] L. Smith and M. Gasser, “The development of embodied cognition:
Six lessons from babies,” Artificial life, vol. 11, no. 1-2, pp. 13-29,
2005.

[2] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, ef al., “Transporter
networks: Rearranging the visual world for robotic manipulation,” in
Conference on Robot Learning. PMLR, 2021, pp. 726-747.

[3] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on robot learning.
PMLR, 2022, pp. 894-906.

[4] , “Perceiver-actor: A multi-task transformer for robotic manipula-
tion,” in Conference on Robot Learning. PMLR, 2023, pp. 785-799.

[51 A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox, “Rvt:

Robotic view transformer for 3d object manipulation,” in Conference

on Robot Learning. PMLR, 2023, pp. 694-710.

S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The

robot learning benchmark & learning environment,” IEEE Robotics

and Automation Letters, vol. 5, no. 2, pp. 3019-3026, 2020.

[71 W. Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox,
“The colosseum: A benchmark for evaluating generalization for robotic
manipulation,” arXiv preprint arXiv:2402.08191, 2024.

[8] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-
grained bimanual manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023.

[6

=

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

(291

[30]

(31]

[32]

C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, “Diffusion policy: Visuomotor policy learning via
action diffusion,” The International Journal of Robotics Research,
p- 02783649241273668, 2023.

A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

S. Chen, R. Garcia, C. Schmid, and I. Laptev, “Polarnet: 3d point
clouds for language-guided robotic manipulation,” arXiv preprint
arXiv:2309.15596, 2023.

W. Yuan, A. Murali, A. Mousavian, and D. Fox, “M2t2: Multi-task
masked transformer for object-centric pick and place,” arXiv preprint
arXiv:2311.00926, 2023.

J. Duan, W. Yuan, W. Pumacay, Y. R. Wang, K. Ehsani, D. Fox, and
R. Krishna, “Manipulate-anything: Automating real-world robots using
vision-language models,” arXiv preprint arXiv:2406.18915, 2024.

S. James and P. Abbeel, “Coarse-to-fine g-attention with learned path
ranking,” arXiv preprint arXiv:2204.01571, 2022.

T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki, “Act3d: Infinite
resolution action detection transformer for robotic manipulation,” arXiv
preprint arXiv:2306.17817, 2023.

Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki,
“Chaineddiffuser: Unifying trajectory diffusion and keypose prediction
for robotic manipulation,” in 7th Annual Conference on Robot Learning,
2023.

A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox, “Rvt-
2: Learning precise manipulation from few demonstrations,” arXiv
preprint arXiv:2406.08545, 2024.

A. Majumdar, K. Yadav, S. Arnaud, J. Ma, C. Chen, S. Silwal, A. Jain,
V.-P. Berges, T. Wu, J. Vakil, et al., “Where are we in the search for an
artificial visual cortex for embodied intelligence?” Advances in Neural
Information Processing Systems, vol. 36, pp. 655-677, 2023.

Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and
A. Zhang, “Vip: Towards universal visual reward and representation via
value-implicit pre-training,” arXiv preprint arXiv:2210.00030, 2022.
S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m: A
universal visual representation for robot manipulation,” arXiv preprint
arXiv:2203.12601, 2022.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in neural
information processing systems, vol. 33, pp. 19 884-19 895, 2020.

D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” in
International conference on learning representations, 2021.

M. Laskin, A. Srinivas, and P. Abbeel, “Curl: Contrastive unsupervised
representations for reinforcement learning,” in International conference
on machine learning. PMLR, 2020, pp. 5639-5650.

J. Shang, K. Schmeckpeper, B. B. May, M. V. Minniti, T. Kelestemur,
D. Watkins, and L. Herlant, “Theia: Distilling diverse vision foundation
models for robot learning,” arXiv preprint arXiv:2407.20179, 2024.
R. Shah and V. Kumar, “Rrl: Resnet as representation for reinforcement
learning,” arXiv preprint arXiv:2107.03380, 2021.

C. Wang, X. Luo, K. Ross, and D. Li, “Vrl3: A data-driven framework
for visual deep reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 35, pp. 32974-32 988, 2022.

J. Zhang, C. Bai, H. He, W. Xia, Z. Wang, B. Zhao, X. Li, and X. Li,
“Sam-e: Leveraging visual foundation model with sequence imitation
for embodied manipulation,” arXiv preprint arXiv:2405.19586, 2024.
D. Wang, R. Walters, X. Zhu, and R. Platt, “Equivariant ¢ learning
in spatial action spaces,” in Conference on Robot Learning. PMLR,
2022, pp. 1713-1723.

S. Dasari, M. K. Srirama, U. Jain, and A. Gupta, “An unbiased look at
datasets for visuo-motor pre-training,” in Conference on Robot Learning.
PMLR, 2023, pp. 1183-1198.

S. Jockel, M. Weser, D. Westhoff, and J. Zhang, “Towards an episodic
memory for cognitive robots,” in Proc. of 6th Cognitive Robotics
workshop at 18th European Conf. on Artificial Intelligence (ECAI).
Citeseer, 2008, pp. 68-74.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor
environments,” The international journal of Robotics Research, vol. 31,
no. 5, pp. 647-663, 2012.

S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Proba-
bilistic data association for semantic slam,” in 2017 IEEE international

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

conference on robotics and automation (ICRA). 1EEE, 2017, pp.
1722-1729.

D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov, “Object
goal navigation using goal-oriented semantic exploration,” Advances in
Neural Information Processing Systems, vol. 33, pp. 4247-4258, 2020.
F. Peller-Konrad, R. Kartmann, C. R. Dreher, A. Meixner, F. Reister,
M. Grotz, and T. Asfour, “A memory system of a robot cognitive archi-
tecture and its implementation in armarx,” Robotics and Autonomous
Systems, vol. 164, p. 104415, 2023.

H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao, “Copa: General
robotic manipulation through spatial constraints of parts with foundation
models,” arXiv preprint arXiv:2403.08248, 2024.

W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” arXiv preprint arXiv:2307.05973, 2023.

P. Liu, Z. Guo, M. Warke, S. Chintala, C. Paxton, N. M. M. Shafiullah,
and L. Pinto, “Dynamem: Online dynamic spatio-semantic memory for
open world mobile manipulation,” arXiv preprint arXiv:2411.04999,
2024.

B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering.” ACM Trans. Graph.,
vol. 42, no. 4, pp. 139-1, 2023.

O. Shorinwa, J. Tucker, A. Smith, A. Swann, T. Chen, R. Firoozi,
M. D. Kennedy, and M. Schwager, “Splat-mover: Multi-stage, open-
vocabulary robotic manipulation via editable gaussian splatting,” in
8th Annual Conference on Robot Learning, 2024.

M. Lauri, D. Hsu, and J. Pajarinen, “Partially observable markov
decision processes in robotics: A survey,” IEEE Transactions on
Robotics, vol. 39, no. 1, pp. 21-40, 2022.

N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr,
R. Rédle, C. Rolland, L. Gustafson, et al., “Sam 2: Segment anything
in images and videos,” arXiv preprint arXiv:2408.00714, 2024.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervision,”
in International Conference on Machine Learning, 2021. [Online].
Auvailable: https://api.semanticscholar.org/CorpusID:231591445

T. Dao, “Flashattention-2: Faster attention with better parallelism
and work partitioning,” ArXiv, vol. abs/2307.08691, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:259936734

J. Su, Y. Lu, S. Pan, B. Wen, and Y. Liu, ‘“Roformer:
Enhanced transformer with rotary position embedding,” ArXiv, vol.
abs/2104.09864, 2021. [Online]. Available: https://api.semanticscholar
org/CorpusID:233307138

B. Heo, S. Park, D. Han, and S. Yun, “Rotary position embedding
for vision transformer,” in European Conference on Computer Vision,
2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
268536717

https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:259936734
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:268536717
https://api.semanticscholar.org/CorpusID:268536717

	Introduction
	Related Work
	3D-based Robotic Transformer for Manipulation
	Visual Representations for Robot Learning
	Memory in Robotics

	MemoryBench: A Memory Benchmark for Robotic Manipulation
	Task Design
	Spatial Memory-based Tasks

	Method
	SAM2Act: Multi-Resolution Upsampling for Enhanced Visual Feature Representation
	SAM2Act+: Action Memory Architecture for Improved Spatial Awareness in Past Observations

	Experiments
	Experimental Setup
	Performances Across 18 RLBench Tasks
	Semantic Generalization across Tasks
	Performance on MemoryBench
	Real-robot Evaluations

	Conclusion & Limitation
	Model Architecture
	Training Implementation
	SAM2Act
	SAM2Act+

	Ablation on SAM2Act
	RLBench
	The Colosseum

	Results
	MemoryBench Update
	RLBench Tasks
	Overview of MemoryBench Tasks and Real-world Tasks
	MemoryBench Tasks
	Real-world Experiments
	References

