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Abstract— Robotic in-hand manipulation, involving fingers
making and breaking contacts, advances toward human-like
dexterity in real-world robotic interactions. While learning-
based approaches have recently shown promising performance,
they face bottlenecks due to high data requirements and
lengthy training times. Although model-based methods have
the potential to overcome these limitations, they struggle with
efficient online planning and handling modeling errors, which
limits their real-world applications. This paper proposes a
novel approach for in-hand manipulation that addresses the
limitations of both learning-based and model-based methods.
The key feature of our approach is the integrated real-time
motion-contact planning and tracking, achieved through a hi-
erarchical structure. At the high level, finger motion and contact
force references are jointly generated using contact-implicit
model predictive control (CIMPC). At the low level, these
combined references are tracked with tactile feedback. Exten-
sive experiments demonstrate that our approach outperforms
existing methods in terms of accuracy, robustness, and real-time
performance. It successfully completes all 6 challenging tasks
in real-world environments, even under significant external
disturbances.

I. INTRODUCTION

In-hand manipulation refers to changing the position of
grasped objects using fingers, the palm, and external contacts
[1], [2],. This capability is essential for enabling versatile and
dexterous robotic interaction with the real world [3], [4]. In-
hand manipulation can be categorized into in-grasp manip-
ulation [5], where hand-object contacts are maintained, and
manipulation involving finger making and breaking contacts
(regrasping) [2], [6]. This paper focuses on the latter, which
is challenging due to two key aspects. First, modeling errors
are unavoidable due to the difficulty of accurately modeling
the nonlinear, contact-rich dynamics [7]–[9], compounded
by sensor noise and variability in object properties and
hand structures. Robust planning and control, incorporating
contact state monitoring with tactile feedback, as well as
visual and proprioceptive signals, are essential. Second, real-
time planning is challenging due to the high degrees of
freedom in multi-fingered hands and the need to coordinate
numerous contacts. External disturbances and stochastic con-
tact dynamics [10] require fast online re-planning to update
contact sequences and recover from perturbations, especially
in long-horizon tasks with regrasping.

To address these issues, considerable works have been
reported, divided into learning-based and model-based meth-
ods. Reinforcement learning (RL) achieves state-of-the-art
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Fig. 1. Overview of the proposed framework for generalizable in-hand
manipulation. The framework is model-based and organized as a hierarchical
structure. In the high level, a contact-implicit MPC generates real-time
motion-contact plans where the fingers make and break contacts. In the
low level, a tactile-feedback controller tracks the high-level plans while
compensating for the modeling errors by exerting desired contact force.

performance through parallel simulation and domain ran-
domization [11]–[14]. However, RL’s generalization requires
extensive data, posing significant challenges for further de-
ployment. In contrast, model-based methods offer training-
free generalization. These methods can be further categorized
into contact-explicit and contact-implicit methods. Contact-
explicit methods transform manipulation into a hybrid prob-
lem, solving discrete contact sequences and continuous
control inputs [15]–[18]. However, to avoid the locality
of solutions, problems are often solved considering the
complete manipulation sequence, making online re-planning
time-consuming and susceptible to perturbations. Contact-
implicit methods, on the other hand, plan directly through
contacts without explicitly considering contact sequences,
using complementary constraints that are difficult to solve
[19]–[22]. To ensure real-time performance, they typically
use simplified models with poorer physical fidelity. Hence,
combining the adaptability of contact-implicit methods with
the robustness of contact-explicit methods is a promising
direction.

This paper addresses the in-hand manipulation problem
with regrasping, emphasizing robust, long-horizon manipula-
tion in the presence of external disturbances and significant
object pose changes. It proposes a hierarchical framework
combining real-time integrated motion-contact planning and
tactile-feedback tracking control. At the high level, a contact-
implicit model predictive control (CIMPC) scheme com-
putes reference finger motions and contact forces using a
differential dynamic programming (DDP) algorithm and an
implicit contact model. At the low level, these references
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are tracked with MPC-based hybrid force-motion control
(HFMC) incorporating tactile feedback. The high-level mod-
ule enables real-time planning, while the low-level module
ensures robust execution and addresses modeling errors like
the force-at-a-distance effect1 caused by modeling errors. We
conduct extensive simulations and real-world experiments to
validate the accuracy, robustness, and real-time performance
of the proposed framework, with the first two metrics out-
performing existing methods. Videos and codes are available
on the project website2.

II. METHOD

This section outlines our method for synergistically plan-
ning and tracking finger movements and contact forces
in dexterous in-hand manipulation. For a comprehensive
overview, see Appendix A.

A. Assumptions and Notation

This paper considers the task of quasi-dynamic in-hand
manipulation through rigid frictional contacts. We make
the following assumptions: 1) The in-hand manipulation
is performed under quasi-dynamic conditions [23], which
means negligible inertia effects. 2) The object is modeled
as a single rigid body. The geometry of the object and
fingers is known, while the inertia and surface parameters are
approximately estimated. In this article, we use superscripts
a, u for the robot (actuated) and the object (unactuated). And
∥ · ∥W is the weighted quadratic norm. Besides, [a; b] is the
vertical concatenation of vectors a, b, [A;B] is the vertical
stacking of matrices A,B, and blkdiag(A1, · · · ,Am) is
the block diagonal matrix composed of A1, · · · ,Am. In
addition, ⊕,⊖ are the generalized addition and subtraction
involving operations on the SE(3) group. Notations used in
this paper are summarized in Tab. I.

TABLE I
NOTATIONS USED IN THIS ARTICLE

High-Level Module
x state of the full hand-object system [xu;xa]
xu object pose composed of position and quaternion
xa hand joints
u control input (i.e., delta desired joints)
Low-Level Module
s low-level state [q; qd;Λext]
q, qd actual and desired joints
λext,Λext the contact force of a single contact and all contacts
u control input (i.e., the change rate of desired joints q̇d)
J stacked hand kinematic Jacobian of all contacts
Go the grasp matrix
KP ,KD stiffness and damping of the hand’s joint PD model
Others
nc number of active contacts
nq number of joints
N prediction horizon for the high-level discrete system

1Also refered to as the ”boundary layer” effect in [19]
2https://director-of-g.github.io/in hand manipulation/. This manuscript is

an abstract version of a journal paper that will soon be submitted. The
website, video, and code are coming soon and are expected to be available
before the workshop.

B. Real-Time Motion-Contact Planning

The high level module aims at generating adaptive finger
motion and contact force references based on desired object
motion. This process can be realized by solving the following
OCP in a receding horizon fashion:

min
X,U

N−1∑
i=0

l(xi,ui) + lf (xN )

s.t. x0 = xinit

xi+1 = f(xi,ui)

xi ∈ Xjnt ∩ Xsc

ui ∈ U

(1)

where X = {x0, · · · ,xN} ,U = {u0, · · · ,uN−1} are the
state and control variables, xinit is the known initial state.
The feasible sets Xjnt, Xsc represents the joint limit and self-
collision constraint, respectively, and U is the input bound.
We adopt the CQDC model (Appendix B) as the dynamics
f . In addition, Xjnt,Xsc,U are converted to soft constraints:

l(x,u) = lreg(x) + lreg(u) + ljnt(x) + lsc(x)

lf (xN ) = lreg(xN )
(2)

The running cost l is composed of the regulation cost lreg,
the joint limits cost ljnt and the self-collision cost lsc; While
the final cost lf consists of only the regulation cost of states.
Please refer to Appendix C for the specific form of each cost.
More details of the high-level MPC formulation can be found
in Appendix D.

C. Tactile-Feedback Motion-Contact Planning

This section introduces a tactile-feedback controller for
synergistically tracking finger movements and contact forces.

1) Contact Force-Motion Model with Coupling Effect:
During in-hand manipulation, suppose that the object is not
fully constrained, the motion of each finger also affects
the contact forces of the other fingers through the object’s
movement (i.e., the coupling effect), we introduce the grasp
matrix Go ∈ R6×3nc , and the following mappings hold:

wext = GoΛext, δPc = G⊤
o δx

u (3)

where wext is the resultant wrench applied on the object,
Λext,Pc are stacked contact forces and locations of all nc

contacts. The coupled stiffness is derived as:

Kcoup =
∂Λext

∂Pd
= K̄

(
I − ∂Pc

∂xu

∂xu

∂Pd

)
= K̄ + K̄G⊤

o

(
GoK̄G⊤

o

)−1
GoK̄

(4)

where K̄ is the decoupled stiffness described in Ap-
pendix E.1 and E.2. Note that the second term is the correc-
tion term due to the coupling effect. And the force-motion
model is formulated as q̇

q̇d
Λ̇ext

 =

u+K−1
D

(
KP (qd − q)− J(q)⊤Λext

)
u

KcoupJ(qd)u

 (5)
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TABLE II
COMPARISON BETWEEN DIFFERENT METHODS IN THE SPHERE ROTATION TASK IN MUJOCO SIMULATION.

Methods Success rate ↑ Average task error (rad) ↓ Average task error
of successful cases (rad) ↓

Average task error S.D.
of successful cases (×10−1rad) ↓

ours (planning)a 100 / 100 4.954×10−5 4.954×10−5 0.003
ours 100 / 100 0.024 0.024 0.034

openloop 14 / 100 0.644 0.069 0.004
MJPC (CEM) 83 / 100 0.099 0.050 4.505
MJPC (iLQG) 14 / 100 0.464 0.084 5.601

Methods Average task time
of successful cases (s) ↓

Average joint
acceleration (rad/s2) ↓

Average control frequency
high-level/low-level (Hz)

ours (planning)a 28.824 0.247 10.007 / N/A
ours 35.550 0.618 9.884 / 30.006

openloop 47.801 0.651 9.456 / N/A
MJPC (CEM) 21.926 174.578 99.996 / N/A
MJPC (iLQG) 24.999 198.478 99.998 / N/A
a ours (planning) refers to testing the high-level planning module without MuJoCo simulation.

Define s ≜ [q; qd;Λext] ∈ R2nq+3nc , and the above equation
can be represented as the continuous time dynamics ṡ =
g(s,u). Details of the force-motion model can be found in
Appendix E.

2) Model Predictive Control: With the proposed force-
motion model (5), we can now derive the low-level controller
with MPC.

min
u

∫ t0+T

t0

(
∥q − qref∥2Wq

+

nc∑
i=1

∥FKi(q)⊖ FKi(qref)∥2Wpi

+ ∥Λext −Λext, ref∥2WΛ
+ ∥u∥2Wu

dτ

)
s.t. ṡ = g(s,u)

(6)
where qref and Λext, ref are the reference finger motions
and contact forces, respectively. We follow the treatment
in [24] to directly solve the problem with efficient third-
party solvers. We find this choice avoids discretization errors
while maintaining the control frequency at real-time rates.
Details of the low-level MPC formulation can be found in
Appendix. F.

III. SIMULATIONS

We choose the Rotate Sphere task to compare different
methods. Two representative approaches from existing work
were chosen: 1) executing generated finger motions in an
open-loop manner (openloop); 2) predictive sampling (PS)
using Cross Entropy Methods (CEM) or gradient-based
methods (iLQG). Detailed implementation of the baselines
can be found in Appendix G.6. We generate 100 random
target orientations, of which the rotation from the initial
orientation is no more than 90 degrees. For each target ori-
entation, we record the sphere orientation and joint positions
within the first 60s. The evaluation metrics are discussed in
Appendix G.7.

1) Results and Discussions: As shown in Tab. II, the
proposed method achieves the highest precision and success
rate with the smoothest finger motions. Compared with
the openloop baseline, our method has a lower task error
since the tactile-feedback controller tracks desired contact
forces and avoids missing contacts. The openloop baseline
demonstrates poorer performance compared to [19]. This

is attributed to the omission of the additional trajectory
optimization process, ensuring a fair comparison as the
experiments are conducted in real-time. Furthermore, we
employ the more accurate MuJoCo simulator instead of a
quasi-static simulator3. For the same reason, the openloop
baseline has the lowest task error S.D. Compared with MJPC
(CEM), our method has a lower task error, since sampling-
based methods have poorer performance especially near
convergence. However, MJPC quickly reduces task error,
resulting in the shortest task time. This is attributed to the
precise dynamics model utilized by MJPC. Besides, our
method has much lower task error S.D. and joint acceleration,
which show a potential advantage for hardware deployment.
MJPC (iLQG) has the worst performance, since the gradients
computed through finite difference often vanish for contact-
rich manipulation, which indicates the importance of smooth-
ing.

Remark. Compared to manipulation tasks, MJPC (iLQG)
performs relatively better on locomotion tasks [25], [26], as
foot contacts are easily established due to gravity and the
gradients are typically non-zero.

Additional simulation results can be found in Appendix G.

IV. REAL-WORLD EXPERIMENTS

A. Experiment Setup

We attach the LEAP Hand to the flange of a UR5 arm,
which serves as a movable base, and the wrist movements
are not utilized during in-hand manipulation. The original
fingertips of LEAP Hand are replaced with four vision-
based tactile sensors Tac3D [27], which estimate the contact
normals and forces at 30Hz. The objects are tracked with
AprilTags [28] and one RealSense D405 camera at 30Hz. We
only track relative movements with no need for calibration.
The parallelization of different modules and the hardware
access are implemented with ROS2 [29]. The high-level
motion generation runs at 10Hz for all tasks, and the low-
level controller computes and sends joint commands at 30Hz.

3In [19], an additional trajectory optimization with a smaller time step
refines the planned trajectory to mitigate the ”boundary layer” effect.
Moreover, [19] employs a custom quasi-static simulator, which is less
accurate than alternatives.
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Fig. 2. Relative force tracking error and snapshots of the grasping experiment. The objects are: (a) banana, (b) mango, (c) onion, (d) pear, (e) pepper.

Besides, the joint states of LEAP Hand are queried at no
more than 60Hz. Further real-world experimental results and
additional details are available in Appendix H.

B. Real-World Grasping Experiment

We test the low-level controller in a grasping experiment
similar to Appendix G.10, and the results are shown in Fig. 2.
We execute grasping 3 times for each of the 5 objects. The
relative force tracking error is small and remains consistent
between multiple trials, which accords with the simulation.
The results demonstrate that the proposed tactile-feedback
controller is reliable to track desired contact forces. Extended
experiments of this task can be found in Appendix H.2.

C. Experiments of the Open Door Task

We customize a door model with cylindrical handle and a
hinge joint to accommodate of the LEAP Hand, as shown in
Fig. 3 (a)(b). The task first requires in-hand manipulation to
turn the door handle 180 degrees so that the notch is aligned
with the door latch, which requires high precision. The hand
then pulls open the door as shown in the last column of the
snapshots. The rotation of the door handle during four trials
is shown in Fig. 3 (c). We exert human interference in Trial
1 and 2, as shown in the peaks. The door handle is turned to
the target orientation even under disturbances. The planned
and real contact forces during Trial 4 are visualized in
Fig. 3 (d)(e). The boxes with solid borders and the shadows
filled in corresponds to time intervals where the planned and

real contact forces exceed the given threshold 0.1N (time
intervals that last less than 1 s are regarded as noises and
are neglected). If the planned forces are ideally tracked, the
shadows will fill up 100% of the boxes. However, there
is an obvious tracking delay especially when the planned
forces do not maintain for sometime (i.e., high-frequency
oscillation). The reasons for the imperfection include the low
sampling frequency and the servo characteristics which are
not accurately modeled.

V. CONCLUSIONS

This paper introduces a hierarchical model-based approach
for generalizable in-hand manipulation. The high-level mod-
ule generates real-time motion-contact plans, while the low-
level module uses tactile feedback to correct modeling errors
and track these plans. Both modules run in parallel, enabling
robust and precise long-horizon manipulation. At the high
level, we solve a contact-implicit MPC problem using the
CQDC model and DDP solver, with strategies for real-time
performance. At the low level, we use an MPC-based HFMC
scheme to balance tracking desired motion and contact forces
based on tactile feedback. Experiments show that our method
outperforms existing approaches in accuracy, robustness, and
real-time performance, generalizing to various tasks without
pre-training. Future work will involve replacing the CQDC
model with explicit contact-based dynamics and learned
models to enhance control frequency and enable more dy-
namic motions.
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(b) Handle Rotation (c) Planned and Real Contacts (Trial 4) (d) Ring Force (Trial 4) (e) Thumb Force (Trial 4)

Disturbance

Disturbance

Door Open

Fig. 3. Experiment results of the open door task with disturbance. (a) Snapshots from two different views. (b) Door handle rotation of different trials. (c)
Planned and real contacts (Trial 4) represented as time intervals where the contact forces exceed a given threshold. (d)(e) The planned and real contact
forces.
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Fig. 4. The proposed integrated motion-contact planning and tracking framework. (A) The user inputs the desired object motion, hand grasp pose, and
models for both. (B) The high-level real-time motion-contact planner employs contact-implicit MPC to generate motion-contact references from the initial
state x0, state reference xref, and the previous iteration’s solution X∗,U∗. (C) The low-level tactile-feedback tracking controller uses tactile feedback to
track these references jointly. The core algorithm is an MPC-based HFMC. (D) Together, these modules ensure robust and precise in-hand manipulation
across multiple tasks.

APPENDIX

A. Overview of the Proposed Framework

This section provides an overview of the proposed frame-
work for dexterous in-hand manipulation, as illustrated in
Fig. 4. The framework takes as input the desired object
motion, the hand grasp pose, and the models of both the
object and hand. It eliminates the need for predefined contact
sequences or predetermined finger motions, thanks to real-
time planning with implicit contact models. The framework
has a hierarchical structure, including the high-level real-
time integrated motion-contact planner and the low-level
tactile-feedback tracking controller. The two modules run
in parallel, and are related through the integrated motion-
contact references. Note that different dynamics models are
used at different levels. At the high level, we care about
the full system dynamics with joint motion-contact planning
ability. Thus the smoothed CQDC model (8) f is used; At the
low level, we care about the local force-motion relationship
and the computation speed. Since the high-level model (8)
is optimization-based, we use a simpler compliant contact
model g. The dynamics models will be discussed in the
later sections. In addition, the models are updated with
proprioception and object perception.

We then discuss the coordination between the motion-
contact planner and controller. The high-level planner gener-
ates coarse finger motions to establish specific contacts and

w/o contact tracking

Actual Contact Force

Object Geometry

Finger Geometry

Planned Contact Force

Contact Distance

w/ contact tracking

Fig. 5. This detailed view of the proposed framework. In the top figures,
the high-level integrated motion-contact planning module generates real-
time finger motions (with only the index finger visualized) and contact
information, such as locations and forces (with only force visualized). The
right figures illustrate how smoothed contact dynamics lead to the force-at-
a-distance effect, where non-zero planned forces appear even when contact
is inactive. Modeling errors, including this effect, can be mitigated through
low-level joint motion-contact tracking.
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drive the object to follow the desired motion. Finger motions,
contact locations, and forces are jointly planned. However,
due to smoothed contact dynamics, the force-at-a-distance
effect can occur, leading to insufficient contact force and
sliding during pure motion tracking. The low-level module
addresses modeling errors, including the force-at-a-distance
effect, by jointly tracking planned motions and contact forces
using tactile feedback. Consequently, the desired motion
deviates from the high-level plan, ensuring the actual contact
forces closely match the planned forces. The output of the
low-level module is then converted into position commands
for the hardware.

B. CQDC Model

1) CQDC Model Formulation: Pang et al. [19] proposed
an implicit time stepping for general multi-contact systems.
Under quasi-dynamic assumptions, the system dynamics is
constructed as the KKT conditions of the following Second
Order Cone Program (SOCP):

δx∗ = min
δx

1

2
δx⊤Qδx+ h · b⊤δx

s.t. Jiδx+

[
ϕi

02

]
∈ FC∗(µi),∀i ∈ {1, . . . , nc}

(7)
where h is the discrete time step, nc is the number of active
contacts, and FC∗(µ) =

{
(α,β) ∈ R× R2|µ∥β∥2 ≤ α

}
is the dual friction cone with friction coefficient µ. The
state-dependent signed distance ϕ(x) and contact Jacobian
J(x) are computed with collision detection. Besides, Q and
b(x,u) are computed from the pre-set robot stiffness and
object inertia (i.e., model parameters). In this paper, only
contacts with ϕ ≤ 0.1m (i.e., active contacts) are considered,
following the approach in [19]. The implicit time stepping
is derived as x+ = f(x,u) = x⊕ δx(x,u). In this article,
we refer to f(x,u) as the CQDC model.

2) Smoothing of the Contact-Based Dynamics Model:
Due to the rigid contact modeling, directly solving (7) results
in shortsighted outcomes that inadequately explore possible
contact modes. In [19], the original dynamics (7) is smoothed
with a barrier function, resulting in the following problem:

δx∗ = min
δx

1

2
δx⊤Qδx+ h · b⊤δx

− 1

κ

nc∑
i=1

log

(∥∥∥∥Jiδx+

[
ϕi

02

]∥∥∥∥2
WFC

) (8)

where WFC = blkdiag(1,−µ2
i I2), and κ controls the degree

of smoothing. Due to this smoothing, a small κ (e.g., on
the order of hundreds) can generate non-negligible forces
even when the constraint remains inactive. This phenomenon
is known as the force-at-a-distance effect. While beneficial
for planning, it can be detrimental to control by causing
sliding and missed contacts, which the proposed framework
addresses.

3) The Gradient Computation: An important property of
the CQDC model is the differentiability, which is required

by the backward pass of DDP. According to [19], the partial
derivatives over state and control are

∂f

∂x
= I +

∂δx

∂x

= I +
∂δx

∂b

∂b

∂x
+

nc∑
i=1

(
∂δx

∂Ji

∂Ji

∂x
+

∂δx

∂ϕi

∂ϕi

∂x

)
∂f

∂u
=

∂δx

∂u
=

∂δx

∂b

∂b

∂u

(9)

The partial derivatives can be obtained through sensitivity
analysis or automatic differentiation. However, the CQDC
model is restricted to relatively simple geometries (e.g.,
spheres, boxes) due to the inherently non-differentiable na-
ture of collision detection, as reflected in the contact Hessian
∂J
∂x .

In this article, we propose to approximate the contact
Hessian by numerical differentiation.

∂J

∂xi
≈ J(x+∆i)− J(x)

∆i
(10)

where xi is the ith dimension of x and ∆i denotes the
perturbation to xi. Most elements of the Jacobian matrix
are zero, and this sparsity is predictable due to the tree
structure of the multi-fingered hand. Thus, numerical differ-
entiation only slightly increases computation time. Compared
to smoothing over geometries, numerical differentiation is
easy to implement, introduces no extra parameters, and
remains effective.

C. Cost Terms of the High-Level DDP

1) Regulation Cost: The regulation cost includes two
parts. The state-dependent part lreg(x) encourages contact-
rich plans that lead the object to follow reference motions;
The control-dependent part lreg(u) penalizes excessive con-
trol input and improves numerical conditions of the control
problem. The regulation cost is formulated as the weighted
quadratic norm:

lreg(x) = ∥xa − xa
ref∥2W a

x
+ ∥xu ⊖ xu

ref∥2Wu
x

lreg(u) = ∥u∥2Wu

lf (xN ) = ∥xa
N − xa

N,ref∥2W a
xN

+ ∥xu
N ⊖ xu

N,ref∥2Wu
xN

(11)

where x·
ref,x

·
N,ref are the state references. If the desired

object motion is continuous, then xu
ref is increased from xu

init
with constant velocity. If the desired object motion is a fixed
target pose, xu

ref is then constructed by interpolating from
xu

init to the target.
Merely using the object tracking cost ∥xu⊖xu

ref∥2Wu
x

often
causes the system to fall into local optima, i.e., the fingers
simply follow the object motion and fail to actively break
contacts. Typically, the expected finger motion accords with
the periodic pattern (e.g., finger gaiting) [11]. Thus another
term ∥xa − xa

ref∥2W a
x

is introduced to encourage local ex-
ploration and contact breaking of the fingers. We emphasize
that xa

ref is not a predefined trajectory, but rather a hand
configuration that remains fixed during the manipulation. In
practice, xa

ref can be generated with grasp synthesis methods
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or tuned with GUI. The basic idea behind xa
ref is to imitate the

way humans manipulate objects. Specifically, humans tend
to pre-grasp the object and establish potential contacts for
the following manipulation. Besides, this design aligns with
previous works using contact-implicit methods [20], [26].

The weighting matrices W are designed as diagonal
matrices, and the terminal weight WxN

is increased to
improve convergence. The gradients that accumulate on xa

contain two parts: directly from the finger tracking cost and
indirectly from the object tracking cost. The latter is passed
down through the contact-implicit dynamics f .

2) Joint Limits Cost: Dexterous hands typically have
mechanical joint limits, for example, the joint limits of LEAP
Hand are reported in [30]. Violating joint limits will cause
the mechanical structures to collide and result in overloads,
since the current is positively related to the output torque
for common actuators. In addition, the differences between
actual and predicted joint angles will result in significant
modeling errors. Thus we design the joint limits cost as
follows:

ljnt(x) =
wjnt

2

(
∥min(xa − xa,0)∥22 + ∥max(xa − xa,0)∥22

)
(12)

where wjnt is the weighting parameter, and min,max are
element-wise operations. From (12), the joint limits cost is
designed as a barrier function. In other words, ljnt remains
zero if xa stays within the limits, and penalizes the dimen-
sions that violate limits.

3) Self-Collision Cost: Using joint limits cost only will
not be able to avoid collisions between fingers, especially
when only part of the collision geometries are used. Thus
we introduce the self-collision cost defined as:

lsc(x) = wsc

∑
i,j∈{1,··· ,nl}

i ̸=j

σ (d (FKi(x),FKj(x))) (13)

where wsc is the weighting parameter, nl is the number of
monitored links. To reduce the computational burden, instead
of including all links in (13), we can first solve (1) without
lsc and only monitor the links in collision. Besides, FKi is
the forward kinematics of the ith link, where the collision
geometry is attached, and d(·, ·) denotes the translational
distance. The activation function σ is in quadratic barrier
form:

σ(a) =


1

2
(a− γ)2, a < γ

0, otherwise
(14)

According to (13), the state x is penalized only if the distance
between any two links falls below the threshold γ.

D. Details of the High-Level MPC

The proposed OCP (1) with soft constraints (2) is solved
with the Control-Limited DDP [31]. The optimal state
and control trajectories are denoted as X∗,U∗. Mean-
while, the contact force trajectory is formulated as Λ∗ ={
λ∗
1, · · · ,λ∗

N−1

}
, where λ∗ is the dual solution correspond-

ing to the conic constraint of (7). Note that λ∗ excludes
the moment component since the constraint is constructed

Fig. 6. Illustration of the trajectory interpolation and shifting. DDP
produces trajectories X∗ at fixed intervals, shown as the light green
trajectory. The low-level module interpolates the previous solution X∗

old
until a new one is received at trecv. The interpolated trajectory is shown
in dark green, and the arrow denotes the discontinuity. To reduce the
discontinuity, we shift the new solution to X∗

new. The interpolated trajectory
is transformed into joint commands by the low-level module. Note that
due to multiple delays, the real system states xreal always fall behind the
commanded ones.

assuming point contact. Several strategies are proposed to
improve the generalization ability, convergence speed and
smoothness of solutions.

1) Warm Start with Shifted Trajectory: DDP typically
needs a tolerable initial guess since it does only local
optimization. If a trivial initial guess such as zero or random
u is provided, DDP rarely converges. Thus we propose to
warm-start DDP with the previous solution, based on the
method’s predictive ability. Specifically, we construct a spline
with the previous solution U∗ as control points. The spline
is shifted β1τ along the time axis, where τ is the time
passed since the last iteration and β1 influences the speed
of finger motion. The initial guess U0 is interpolated on the
new spline and padded with zeros at the last time step. Note
that the solution might diverge without zero padding. Then,
the initial guess X0 is established from the rollout of U0,
starting at xinit. This ensures the initial guess exactly starts
from the current system state while sharing the same trend
as the previous solution.

2) Discontinuity in the Joint Commands: Once DDP
returns a new solution, the low-level module interpolates and
updates the solution to get desired joint commands, until
the next solution arrives. There is a natural discontinuity
when the new solution replaces the old one, as shown in
Fig. 6(a). Such discontinuity results in obvious jitters in
hardware, which is unwanted in contact-rich manipulation.
Thus we propose to reduce the discontinuity by shifting
the new solution. This is described as X∗

new = X∗ +
β2 (X

∗
old(trecv)−X∗(trecv)), where X∗

new is the shifted solu-
tion, X∗ and X∗

old are the new and old solutions, and trecv is
the time when X∗

new will replace Xold. Note that β2 balances
the smoothness and timeliness of solution.

The processing of reference trajectory X∗,U∗,Λ∗ and
the computation of joint commands will be discussed in
Appendix F.

E. Details of the Contact Force-Motion Model

1) Single Contact Case: We make the following assump-
tions: 1) The finger’s built-in controller can be described by
the joint space PD, with stiffness KP and damping KD; 2)
There are mechanical compliance with both the object and
the fingers, with environment stiffness Ke; 3) The inertia,
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Fig. 7. Notations of the force-motion model. The finger is modeled with
joint PD, i.e., Kp,Kd. At the contact point, the environment stiffness Ke

and the finger’s Cartesian stiffness Kr result in the equivalent stiffness
K̄s. The stiffness of single contact relates contact force λext with desired
motions dpc,d. The forces and motions of all contacts are correlated due to
the object displacement δxu. The force controlled direction n̂ and motion
controlled directions {t̂1, t̂2} are determined with the contact normal.

Coriolis and centripetal effects are neglected at the scale of
contact forces; 4) The point contact model is considered and
the contact wrenches are ignored. Under the single contact
case. Gold et al. [24] proposed the relationship between
contact force and finger motion:

λext = K̄sdpc,d =
(
I +KeK

−1
r

)−1
Kedpc,d (15)

where λext ∈ R3 is the contact force, dpc,d = pd − pc,
and pc,pd ∈ R3 are contact point positions on the object
and robot finger, respectively. Note that pd is associated
with the desired finger configurations. Due to the con-
troller compliance and contact force, the desired and real
finger configurations are usually different. Besides, Kr is
defined as the Cartesian stiffness of the finger at the contact
point, where K−1

r = Js(q)K
−1
P Js(q)

⊤ is configuration-
dependent. Please refer to Fig. 7 for all the notations.
Besides, the following equation is derived from joint space
PD control:

q̇ = q̇d +K−1
D

(
KP (qd − q)− J⊤

s λext
)

(16)

2) Force-Motion Model: Full Hand Case: The force-
motion model in Appendix E.1 applies to the single con-
tact case. There are possibly multiple contacts between the
dexterous hand and the object, and we assume there are nc

contacts. The force-motion model of the complete system
can be derived by repeating (15) for all nc contacts.

Λext = K̄ (Pd − Pc) , (17)

The joint motion equation (16) is now

q̇ = q̇d +K−1
D

(
KP (qd − q)− J⊤Λext

)
(18)

where the matrices are defined as

Λext =

 λext,1
...

λext,nc

 ,Pd =

 pd,1

...
pd,nc

 ,Pc =

 pc,1

...
pc,nc

 ,

K̄ = blkdiag
(
K̄s,1, · · · , K̄s,nc

)
,J =

 Js,1

...
Js,nc


. (19)

The dimensions are Λext ∈ R3nc×1, K̄ ∈
R3nc×3nc ,Pd,Pc ∈ R3nc×1,Jstack ∈ R3nc×nq .

3) Details of the Coupled Force-Motion Model: We ig-
nore the local deformation and assume the contact points
move with the object. The resultant wrench should be
constant under quasi-static assumptions and constant external
force (i.e., gravity), wext = Const. The following equation is
then obtained with (17):

δwext = GoδΛext = GoK̄ (δPd − δPc) = 0 (20)

Apply the implicit function theorem to (20) and we get

∂xu

∂Pd
=

[
∂(δwext)

∂xu

]−1
∂(δwext)

∂Pd

= −
(
GoK̄G⊤

o

)−1
GoK̄

(21)

The coupled stiffness (4) can be obtained accordingly.
The analysis in Sec. II-C naturally applies to the case

where the object moves freely. If the object is partially
constrained (i.e., by a hinge or a supporting surface), (3)∼(4)
still hold, except that the dimensions of some variables and
matrices are adjusted accordingly. Specifically, we keep as
many rows of G0 as possible, and ensures G0K̄G⊤

0 is full-
rank. And wext represents the external wrench applied on
these dimensions. Thus, xu,wext and Go have the same
number of rows.

F. Details of the Low-Level Tactile-Feedback Controller

1) Remarks on the Low-Level MPC Formulation: A
schematic of the proposed feedback controller is visualized in
Fig. 4 (C). In (6), FKi(q) refers to the forward kinematics
of the ith contact, and ⊖ is used to represent pose error.
Note that if the pose error and contact force error terms are
activated with proper Wp and WΛ, the MPC is akin to the
HFMC. We keep the joint error term since the MPC-based
HFMC easily gets into local minimum if the reference pose is
not correctly defined, especially for large-range movements
(i.e., reaching the grasping pose). When the joint error term
is activated, the MPC is akin to Joint Space Control (JSC).
Even though additional constraints are not considered in
the problem, the MPC provides a unified and convenient
framework to implement multiple controllers.

2) Determination of the Matrices: The MPC is initialized
with measured joint position q, last joint command qd
and measured force λext collected from all contacts. The
determination of state references qref,Λext, ref and weight-
ing matrices will be discussed in this section. As for the
reference motion, we construct a spline with the reference
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trajectory qref (t;X
∗, h) , t ∈ [t0, t0 + T ] and sample on

the spline. The same applies to the contact force refer-
ence. As for the weighting matrices, note that WΛ =
blkdiag

(
WΛ1

, · · · ,WΛnc

)
. Thus the weighting matrices

could be determined if all Wpi
and WΛi

are worked out.
These sub-matrices are constructed from the contact normals.
The inline collision detection of high-level MPC generates
the contact normals of all active contacts. For a specific
contact, the averaged contact normal over all time steps
is denoted as n̂. The orthogonal basis

{
n̂, t̂1, t̂2

}
is then

obtained by QR decomposition, and we define T̂ ≜
[
t̂1, t̂2

]
,

as shown in Fig. 7. Following that, the matrices are defined
as:

WΛ = n̂n̂⊤, Wp =

[
T̂ T̂⊤ 0
0 woriI

]
(22)

where wori controls the weight of orientation. And the
environment stiffness Ke is equal to a multiply of WΛ,
corresponding to the steepest growing direction of contact
force. Note that the force controlled direction aligns with
the contact normal. In other words, only the normal contact
force is tracked to maintain the planned contact; While
tangential movements are important for in-hand manipulation
and should lie in the motion controlled subspace.

It is worth noting that the linear stiffness model (15)
only takes effect for the active contacts. Thus all contacts
are classified into two categories according to the force
threshold λ. The matrices WΛ,Wp,Ke in (22) are designed
for contacts with ∥λext, ref∥2 ≥ λ; While for contacts with
∥λext, ref∥2 ≤ λ, the matrices are defined as WΛ = 0,Wp =
I,Ke = 0, since subtle joint motions may not cause changes
in the contact forces, and the controller performs position
tracking only. In addition, we set Wq = 0 for HFMC. As
for JSC, we set Wq = I and Wp = 0. The determination
of weighting matrices is summarized in Table III.

Once (6) is solved and the optimal control u∗ is obtained,
the hardware level joint commands are computed as qd(t0)+
u∗(t0)∆t, where ∆t is the sampling time used for solving
(6). The next MPC iteration is warm-started by shifting u∗.

G. Other Simulation Results

1) Simulation Setup: We use MuJoCo [8] for rigid body
simulation due to its compliant contact model, and use ROS
to parallelize the high-level and low-level modules, resulting
in a simulation environment which highly resembles the real-
world setup. The high-level module generates references for

TABLE III
DETERMINATION OF THE WEIGHTING MATRICES

W
HFMC

JSC
∥λext, ref∥2 ≥ λ ∥λext, ref∥2 ≤ λ

Wq ∈ Rnq×nq 0 I

Wp ∈ R6×6 [T̂ T̂⊤ 0; 0 woriI] I 0

WΛ,Ke ∈ R3×3 n̂n̂⊤ 0 n̂n̂⊤

Wu ∈ Rnu×nu I

finger motions and contact forces at 10 Hz, while the low-
level module interpolates and adjusts the finger motions at
30 Hz. We select seven benchmark tasks for evaluation in
the simulation and on the hardware, as shown in Fig. 8.
Note that tasks 3) and 7) are completed using the Allegro
Hand exclusively in simulation, whereas the other tasks are
performed with the LEAP Hand, providing both simulation
and real-world results.

- Open Door: The door handle rotates around its z-axis
and is rotated by the dexterous hand either continu-
ously or towards a target orientation. The system has
nx = 17, where nx denotes the total DoFs of the hand
and the object combined.

- Open Door (With Wrist Movement): This task is
similar to Open Door except that the wrist is allowed
to translate freely and rotate around the handle’s x-axis
within -30◦∼30◦. The hand executes a three-fingered
grasp, utilizing the thumb and two additional fingers.
The system has nx = 17.

- Rotate Valve: The capsule-shaped valve rotates around
its z-axis and is rotated by the dexterous hand contin-
uously. The system has nx = 17.

- Rotate Card: The card moves freely on the table. The
dexterous hand rotates the card around its z-axis either
continuously or towards a fixed target orientation,
while minimizing the card’s translation. The thumb is
not used in this task. The system has nx = 19.

- Slide Board: The board moves freely on the table. The
dexterous hand slides the board (with three fingers as
in Rotate Card) along its y-axis either continuously
or towards a target location. The translation along the
z-axis and the rotation around the x-axis should be
minimized. The system has nx = 19.

- Open Box: The box is fixed on the table and the lid is
lifted and rotated around the hinge joint. The dexterous
hand should make contact with the lid using fingers
other than the thumb and open it to a specified angle.
The system has nx = 17.

- Rotate Sphere: The sphere rotates freely in the SO(3)
space with its center fixed. The dexterous hand rotates
the sphere towards a target SO(3) orientation. The
system has nx = 19.

2) Implementation Details of the Contact-Implicit MPC:
The high-level contact-implicit MPC is implemented with the
Box-DDP solver in Crocoddyl [32] and the CQDC model
from the codebase of [19]. In our Python implementation,
we use the bindings of the C++-based Crocoddyl and CQDC
model. We choose an MPC horizon N = 10 and the max-
imum solver iterations of 2 to guarantee adequate solution
speed. Besides, we set h = 0.1s and κ = 100 in (8). In the
experiments described in Appendix G.3, G.4 and G.5, we
solely evaluate the performance of the high-level motion-
contact planner, where the first planned state is considered
as the subsequent system state.

3) Solution Speed of Different Tasks: The elapsed time
of different tasks during key sub-steps is shown in Fig. 9.
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Open Door (With Wrist Movement)Open Door Rotate Valve Rotate Card

Slide Board Open Box Rotate Sphere

Fig. 8. Snapshots of the benchmark tasks used for evaluation in the simulation and on the hardware. The dexterous hands have simplified visual geometries
and the purple spheres attached at each fingertip are the vollision geometries.

The results represent the time consumed in a single iteration,
which is averaged over the whole manipulation sequence.
The major time-consuming processes are the forward dynam-
ics calc and the gradient computation calc diff. Since DDP
needs multiple rollouts to determine the proper step size, and
it is difficult to truly parallelize these rollouts due to Python’s
Global Interpreter Lock mechanism [33], the computation
of forward dynamics takes up most of the iteration time.
The motion generation of more complex systems (i.e., with
larger nx) tends to consume longer time in each iteration.
However, our selected tasks can generate motion-contact
plans at approximately 8 to 15 Hz, which is sufficient for
real-time planning. In real-world experiments, the low-level
tactile-feedback controller operates at a higher frequency to
track the planned references.

4) Influence of Different MPC Horizons: The Valve Rota-
tion task is used to study the influence of choosing different
MPC horizons. The fingers need to switch between different
movement patterns to accomplish the task, such as stepping
over and pushing the valve. The average rotation speed
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Fig. 9. The elapsed time of the high-level motion generation during key
sub-steps. The ’calc’ and ’calc diff’ represents the forward dynamics and
gradient computation of the CQDC model, respectively. The total height of
the bars indicate the average iteration time for each task.

and the solution time per iteration are shown in Fig. 10.
The valve hardly rotates under shorter horizons N ≤ 4,
and the fingers push the valve without stepping over and
regrasping it, which indicates that shorter horizons lack
predictive ability and easily lead to local optima. On the
one hand, the rotation speed increases with longer horizons,
which indicates improved solution quality. On the other hand,
the solution time increases linearly with the MPC horizon,
which results in degraded control frequency. Thus we choose
N = 10 for all the tasks in the experiments, where the growth
of rotation speed starts to decelerate.

5) Influence of the Smoothness in Forward Dynamics:
We investigate the influence of the smoothness factor κ in
the Open Door task, with the door handle replaced by a
sphere of radius 0.06m. Different κ values are applied in
the forward dynamics computation (8) to achieve varying
smoothness levels. As shown in Fig. 11, excessively large
κ (κ ≥ 500) results in poor convergence and minimal
door handle rotation due to overly conservative DDP step
sizes. Conversely, very small κ (κ = 10) results in exces-
sive smoothing, which enhances nonphysical behavior and
also leads to poor performance. An appropriate κ (κ =
100) facilitates finger-gaiting and consistent rotation speed.
Thus, we demonstrate that high-level modeling errors due
to smoothing cannot be corrected by more realistic forward
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Fig. 10. The rotation speed and solution time per iteration under different
MPC horizon in the valve rotation task. The error bars indicate the standard
deviation. The dashed lines represent the average values.
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Fig. 11. The relationship between κ and optimization results, including
the cost of DDP, the sphere’s rotation (yaw angle), and the action norm.
Warmer colors indicate a weaker smoothing effect.

dynamics alone. This underscores the necessity of the low-
level controller for contact tracking, which compensates for
high-level errors and improves manipulation performance, as
shown in the following sections.

6) Implementation of the Baselines: First, the openloop
baseline is selected from the state-of-the-art model-based
framework [19], which first plans an offline trajectory, op-
timizes it with trajectory optimization, and then directly
executes the trajectory in an open-loop fashion. In contrast,
the proposed method improves the baseline through online
planning, which is more robust to disturbances. For fair
comparison, we implement the openloop baseline by running
the proposed method without the low-level tactile-feedback
tracking controller. The openloop baseline runs at 10 Hz.
Second, the CEM and iLQG baselines are implemented
with the codebase of MuJoCo MPC (MJPC) [25]. One
major drawback of MuJoCo MPC is the need for accurate
dynamics models. We run the algorithms in a ROS2 node
and build a separate MuJoCo simulation environment for
evaluation. Since these methods sample in the joint space
and generate highly dynamic motions, which are harmful
to potential hardware deployment, we clamp the delta joint
positions between adjacent timestamps within [−0.1, 0.1]rad.
This treatment only slightly degrades the performance. The
CEM and iLQG baselines run at 100 Hz.

7) Evaluation Metrics in Simulation: The following met-
rics are used for comparison:

- Success Rate: The number of successful trials over all
100 trials. The trial is judged a success if the minimum
orientation error is below 8 degree.

- Average Task Error: The average minimum orientation
error among all 100 trials or the successful trials.

- Task Error S.D.: The standard deviation of the orien-
tation error after the trial succeeds. This metric reflects
whether the sphere can stabilize at the target orientation.
Besides, this metric is averaged over all successful trials.

- Average Task Time: The average time consumed be-
fore the trial succeeds. This metric is averaged over all
successful trials.

- Average Joint Acceleration: The average joint accel-
eration over all joints and all 100 trials. We sample
the joint positions of different methods at a uniform
frequency for fair comparison. This metric reflects the
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Fig. 12. The task error distribution for the sphere rotation task with
noisy object orientation. The x-axis labels indicate the standard deviation
of the added Gaussian noise. The bars represent the mean and extreme
values, while the gray stripes denote the intervals between the first and
third quartiles.

smoothness of actions.
8) Discussions on the Learning-Based Baselines: Here

we do not compare with learning-based methods since they
cannot efficiently generalize to new tasks. In contrast, the
proposed method seamlessly generalizes to various tasks in
Fig. 8 with different object geometries and dexterous hands,
without any additional training. The users can propose new
prototype tasks by modifying a small number of hyper-
parameters, without laborious reward engineering. However,
learning-based methods should be adept at more dynamic
tasks [12], [13], which is challenging for the proposed
method with simplified models and relatively low control
frequency.

9) Robustness Under Noise and Modeling Errors: First, to
study the performance of the proposed method under sensory
noise, we randomly perturb the sphere’s observed orientation
at each time step. The perturbation is composed of a random
axis and the angle obeys normal distribution N (0, σ2). We
again track the 100 random target orientations in Sec. ??. The
task error and task error S.D. under different σ are shown
in Fig. 12. The task error slightly increases as the noise
increases. And the task error S.D. grows notably with larger
noise. The results show that sensory noise causes unwanted
finger and object motions. The stochasticity also leads to
error reduction when σ ≤ 0.1. Overall, the proposed method
is robust to sensory noises, owing to the online planning and
long-term predictive ability which reduce the sensitivity to
noisy observations.

Second, to explore the influence of modeling errors, we
vary the radius of the sphere in the simulation from 0.05m to
0.064m. We compare the proposed method with the MJPC
(CEM) baseline. The nominal sphere radius retains 0.06m in
the planning module for both methods. The distribution of
task error among all 100 trials is shown in Fig. 13. For the
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Fig. 13. The task error distribution for the sphere rotation task with
modeling error. We use a consistent radius of r = 0.06m in the planning
model across different groups, while the x-axis labels indicate the actual
radius used in the MuJoCo simulation. The control group (CG) has zero
modeling error. Groups L1 to L2 have a larger radius, whereas groups S1
to S5 use a smaller radius for the simulated sphere.
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Fig. 14. Relative force tracking error when executing the grasps generated
using BODex [34]. Examples of the hand configuration at the pre-grasping
stage are shown on the top row. Among the methods, ours refers to the MPC-
based feedback controller, and FB and FF refer to the baseline feedback and
feedforward controllers, respectively. Besides, param1 and param2 refer to
two representative sets of parameters.

proposed method, when the simulated sphere gets smaller,
the task error increases since the fingers should deviate more
from the planned trajectory to generate sufficient contact
forces. Thus the task error decreases when the simulated
sphere gets larger. We do not consider r > 0.064m since the
fingers will penetrate the simulated sphere. In contrast, the
task error of MJPC (CEM) has stronger randomness, which
is shown in the wider range of the error distribution. The task
error decreases when r > 0.058m because the fingers contact
the sphere less often, resulting in less unwanted motions.
Overall, the proposed method achieves higher accuracy and
lower variance under modeling errors, compared to the
predictive sampling baseline.

10) Analysis of the Tactile-Feedback Tracking Controller:
We conduct two experiments to individually evaluate the

proposed tactile-feedback tracking controller. First, the static
grasping experiment is designed to validate the capability of
force tracking. We use BODex [34] to generate 100 grasp
poses with different objects in the test set. Since we are
not proposing a grasping controller, we add the objects with
damped free-floating joints and disable the gravity. In this
way, we can focus on force tracking and neglect other effects.
The static grasping is divided into three stages: 1) Pre-
Grasping: The hand is initialized at the grasp pose with fin-
gers slightly open to avoid contacts; 2) Normal Estimation:
The fingers close gradually until the contact forces reach
the pre-defined threshold. And the stacked contact normals
N = [nthumb,nindex,nmiddle,nring] ∈ R3×nc are obtained;
3) Grasp Control: The proposed controller tracks desired
contact forces. The desired forces are in the directions of the
contact normals, and the magnitudes f ∈ Rnc are decided
by solving the following optimization:

min
f

∥GoNaugf∥+ λ∥f −m1∥ (23)

1 is an all-ones vector, Naug ∈ R3nc×nc is the augmentation
of N , and λ is a weighting factor. Note that (23) penal-
izes unbalanced wrench and regulates the force magnitudes
around pre-set value m.

We compare the proposed controller with two baselines
and the relative force tracking error is shown in Fig. 14. The
baselines include the naive feedback controller (FB) and the
feedforward controller (FF). These two controllers project
Cartesian force to joint motions using the kinematic Jaco-
bian. The feedback controller projects the error of contact
force, while the feedforward controller projects the desired
contact force. As shown in Fig. 14, the proposed controller
achieves the smallest tracking error. The feedback baseline
has slightly worse performance, and needs careful parameter
tuning to avoid oscillations. The MPC design of our method
suppresses these oscillations through penalty on the actions.
The feedforward baseline has the worst performance and
often generates excessive contact force. Although feedfor-
ward controller performs fairly well in locomotion tasks [20],
[26], using feedback controller is necessary for manipulation
where excessive force might damage the objects. Besides,
our MPC design allows the integration of constraints, such
as joint limits.

Second, the in-grasp object movement experiment is de-
signed to evaluate the ability to jointly track finger forces
and motions. In this experiment, the LEAP Hand grasps a
cylinder using three fingers, excluding the middle finger. The
marker at the cylinder’s top center is directed to sequentially
reach waypoints at the eight vertices of a 3 cm cube. After
each waypoint, the marker returns to its initial position.
Finger motions are generated using the code from [35],
with desired forces re-estimated before each waypoint. We
compare the proposed controller to the baseline from [35],
which focuses solely on finger motion tracking. Normal
contact force and position error are illustrated in Fig. 15. The
proposed controller accurately tracks the target normal force,
while the baseline exhibits significant fluctuations. While
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Fig. 15. Results of the in-grasp object movement experiment. Right: Task
snapshot. The marker at the top center of the cylinder successively moves to
8 corners of the cube and back to the initial position. Upper Left: Normal
contact force. Dashed lines represent the desired values, while solid lines
show the execution results. The three dark lines indicate the results of the
proposed controller, and the three light lines represent the baseline results.
Lower Left: Position tracking error. The local minimums indicate tracking
errors when the marker reaches the waypoints.

the baseline achieves high precision in waypoint tracking,
the proposed method sacrifices some position accuracy to
prioritize force tracking. This trade-off is reasonable, as
precision is primarily ensured by the high-level planner
in our approach. Overall, the proposed low-level controller
effectively tracks both finger motion and contact forces.

H. Details of the Real-World Experiments

1) Implementation Details: The parameters of the high-
level module are set as: h = 0.1 s, κ = 100, N = 10, β1 =
0.5, β2 = 0.75. We do not calibrate dynamic parameters such
as mass and friction, which shows the generalization ability
and robustness of the proposed method. And the nominal
friction coefficient of each contact is set as µi = 1. We refer
the readers to [19] for more discussion on the influence of
CQDC model parameters. The parameters of the low-level
module are set as: KP = 4I,KD = I,Ke = 200I, T =
0.3 s,∆t = 0.03 s,λ = 0.5N. To avoid excessive contact
force, the magnitude of high-level reference force ∥λ∥ is
softly thresholded by the function:

L

(
2

1 + e−k∥λ∥ − 1

)
(24)

where k = 0.04, L = 2.
2) Extension of the Open Door Task: We fix the wrist

pose and rotate the door along the vertical axis 30 degrees
counterclockwise (Fig. 16 (a)) or clockwise (Fig. 16 (b)).
We use different sets of three fingers and perform the open
door task twice for each configuration. The door handle
rotation of different trials is shown in Fig. 16. The results
show that the handle rotates at almost the same speed and
converges to the target orientation under different conditions.
For learning-based methods, it typically requires re-training
the policy network to perform the task with different fingers
or palm poses. In contrast, the proposed method generalizes
to different conditions without additional training.
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Fig. 16. (a) The door is rotated 30 degrees counterclockwise. The ring
finger is not used. (b) The door is rotated 30 degrees clockwise. The index
finger is not used. (c) Door handle rotation of different trials.

3) Experiments of the Rotate Card Task: The rotate card
task requires the papery card to be rotated 180 degrees,
while keeping the COM position stationary. The start pose
and goal pose are visualized as the physical card and the
ghost white border in Fig. 17 (a), respectively. We attach the
AprilTag on the extended part of the card to avoid occlusions.
The task is challenging since it relies on the coordination
between fingers to produce torques that form the correct
center of rotation. To test the robustness of the algorithm,
we exert disturbances (rotational and translational) as shown
in Fig. 17 (a). The card rotation of six trials is displayed
in Fig. 17 (b). Note that Trial 1∼4 are implemented with
the HFMC version of the proposed controller, while Trial
5 and 6 are implemented with the JSC version (Tab. III).
The HFMC version rotates slightly slower since the Jacobian
singularities of the stretched fingers make it difficult to track
Cartesian motions along the z-axis, which in turn affects the
manipulation. Nevertheless, all six trials successfully rotate
the card to its target pose even under disturbances, as shown
in Fig.17 (b). The card translation on the yOz plane is
plotted in Fig. 17 (c). The error decreases immediately after
disturbances, since the high-level motion generator switches
between movement patterns according to the cost function.
In addition, the planned and measured contact forces of the
ring, middle, and index fingers are shown in Fig. 17 (d)
(from the top down). Overall, the measured forces follow the
references well. The planned middle finger force is almost
always non-zero, while the index and ring fingers alternately
make contacts, showing the auto-generated finger gaiting.
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Fig. 17. Experiment results of the rotate card task with disturbance. (a) Snapshots of the task. The white border represents the target pose. Rotational
and translational disturbances are exerted by the human operator. (b)(c) Object rotation and translation referred to the coordinate system shown in the first
snapshot in (a). (d) Planned and measured contact forces of the ring, middle, and index fingers (from the top down).
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Fig. 18. Experiment results of the slide board task with disturbance. (a) Snapshots of the task. The white border represents the target pose. External
disturbances are exerted by the human operator. (b)(c) Object rotation and translation referred to the coordinate system shown in the first snapshot in (a).
(d) Planned and measured contact forces of the ring, middle, and index fingers (from the top down).

4) Experiments of the Slide Board Task: The slide board
task requires the board to be translated around 27cm along
the y-axis, so that the board can be lifted by grasping the
middle. The snapshots are shown in Fig. 18 (a). The target
pose is visualized by the white boarder. Since the fingertips
apply relatively small forces to the board due to the servo’s
load limit, we customize a light board with foam core and
cardboard shell to reduce the frictional wrench. The board
translation and rotation are shown in Fig. 18 (b) and (c).
The board quickly recovers from translational disturbance
but recovers slowly from rotational disturbance, since the
frictional torque is relatively large. The rotational disturbance
changes suddenly at around 74s in Fig. 18 due to another
human intervention. The planned and measured forces are
shown in Fig. 18, where the finger gaiting is visualized.

5) Experiments of the Open Box Task: To validate the
ability of the proposed method to generate non-periodic
finger motions, we design the open box task. The snapshots

and results are shown in Fig. 19. The task requires the fingers
to lift up the lid using friction to a certain angle, and then lift
the lid with one of the fingers, as shown in the simulation
snapshots. The angle is set different for different boxes. It
is worth noting that large modeling error exists in the task
since the contact parts of the lid have significantly different
geometries from the simplified cube in the model, as shown
in the snapshots. We observe that the task has low success
rate (fluctuates between 20%∼50% for different boxes). For
each box, we plot the results of two successful trials in
Fig. 19 (a)∼(d). Box D is the most difficult since the lid
is heavy and requires the largest fingertip movement (the
radius of rotation is large). Despite all the difficulties, the
proposed method still finishes the task with generalization
ability and robustness against modeling errors.
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