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Abstract— Imitation learning offers a pathway for robots to
perform repetitive tasks, allowing humans to focus on more
engaging and meaningful activities. However, challenges arise
from the need for extensive demonstrations and the disparity
between training and real-world environments. This paper
focuses on contact-rich tasks involving deformable objects, such
as wiping with a sponge, requiring adaptive force control to
handle variations in wiping surface heights and the sponge’s
physical properties. To address these challenges, we propose a
novel method that integrates real-time time-series force-torque
(FT) feedback with pre-trained object representations, allowing
robots to dynamically adjust to previously unseen changes in
wiping surface heights and sponge’s physical properties.

In real-world experiments, our method achieved 96% accu-
racy in applying reference forces, significantly outperforming
the previous method that lacked an FT feedback loop, which
only achieved 4% accuracy. To evaluate the adaptability of our
approach, we conducted experiments under different conditions
from the training setup, involving 40 scenarios using 10 sponges
with varying physical properties and 4 types of wiping surface
heights, demonstrating significant improvements in the robot’s
adaptability by analyzing force trajectories. The video of
our work is available at: https://sites.google.com/view/adaptive-
wiping.

I. INTRODUCTION

Robots are crucial for handling mundane tasks, but pre-
programming each task is impractical, leading to increased
interest in imitation learning [1]. Despite its benefits, chal-
lenges like the need for extensive demonstrations and dis-
crepancies between training and real-world environments
persist [2]. Thus, robots must not merely mimic but adapt to
new environments, even with limited demonstration data.

A challenging aspect of robotic manipulation is executing
contact-rich tasks, which involve extensive physical interac-
tions. Interestingly, those involving deformable objects pose
particular challenges due to the need for precise force control
and adaptation to changes [3]. Wiping tasks, for example,
demand careful force adjustments based on wiping surface
height and sponge’s physical properties.

Therefore, in this paper, we address the challenge – Could
robots learn a versatile manipulation policy via few-shot
imitation learning capable of adapting to environmental
changes: the height of manipulating surface and the physical
properties of manipulated objects?
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Fig. 1: Wiping tasks: Pretraining in simulation (left), real-
world data collection (middle), and task execution (right).

II. RELATED WORKS AND CONTRIBUTION

Learning-based methods have addressed contact-rich
tasks. Reinforcement learning enables such tasks by defining
reward functions, as in [4], [5], but suffers from sample
inefficiency and sensitivity to reward design.

Imitation learning, in contrast, learns from demonstrations
and is more sample-efficient. Rozo et al. [6] used Gaussian
mixture models for cooperative tasks, while Yamane et
al. [7] employed bilateral control to decouple applied and
environmental forces for grasping.

Manipulating deformable objects is especially challenging
due to the need for precise force control and adaptability. To
address this, prior works have used self-supervised represen-
tation learning with visual or tactile observations to encode
object properties [8]–[10], while other studies highlight the
effectiveness of haptic time-series data in capturing physical
properties [11].

Most closely related to our work, Aoyama et al. [12]
pre-trained haptic representations from force-torque data in
simulation and transferred them to reality to wipe a table with
deformable sponges. However, their approach used open-
loop control and could not adapt to changes in table height.
In contrast to learning-based methods, non-learning-based
methods such as impedance [13] and admittance control [14]
offer closed-loop control but require predefined target forces
or positions, which are unknown in our setting due to varying
sponge properties and wiping surface heights. Thus, we
addressed these challenges with three contributions:

• We propose a framework that combines simulated pre-
training of object properties with real-time time-series
force-torque (FT) feedback, enabling a robot to adapt to
changes in wiping surface heights and sponge’s physical
properties from only a few demonstrations (Fig. 1).

• Unlike [12], we incorporate closed-loop control without
requiring prior target force or position information.

• We validate our method on real hardware by testing it
on various wiping surface heights and sponges, showing
effective adaptation through force measurements.

https://sites.google.com/view/adaptive-wiping
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Fig. 2: Overview of our proposed framework.

III. METHODS

The proposed method consists of two steps: a pre-training
step using a simulator and a training step using a real robot,
before being deployed (Fig. 2), each step is detailed below.

A. Pre-training step

We pre-train the sponge properties encoder ϕsponge on
simulated unlabeled data Dsim = {(τ exp)1, . . . , (τ

exp)M},
collected by performing pre-defined exploratory actions (de-
tailed in IV-B), to capture the sponges’ physical properties
as the latent space Zsponge covering a wide range of the
underlying distribution. We use a self-supervised learning
framework inspired by [12] but with a modified architecture.

Using a Variational Autoencoder (VAE) [15] approach,
the VAE encoder-decoder model ϕsponge − θsponge takes FT
trajectory τ exp from Dsim as inputs and outputs reconstructed
FT trajectory τ̂ exp, treating the latent space Zsponge as a
Gaussian distribution with five dimensions.

The VAE encoder-decoder model ϕsponge − θsponge consists
of 2 fully connected encoder layers, 1 sampling step, and
2 fully connected decoder layers. To flatten the six sensors’
time-series data τ exp ∈ R400×6, we employ 2 fully connected
layers each for the encoder ϕsponge and decoder θsponge.
The encoder ϕsponge comprises 1 fully connected layer of
5 hidden dimensions followed by the flattening step and 1
fully connected layer. Whereas the decoder θsponge comprises
1 fully connected layer with Rectified Linear Unit (ReLU) as
an activation function and a dropout rate of 0.1 followed by
a reshaping step and 1 fully connected layer of 5 hidden
dimensions. The latent space dimension Zsponge ∈ R5 is
designed to capture sponges’ stiffness, friction, and other
non-intuitive physical properties. We adopt a loss function
Lssl shown in Eq. (1), with β = 0.06.

Lssl = EMSE(τ̂
exp, τ exp)

+ βDKL(qϕsponge(z | τ exp) || pϕsponge(z))
(1)

B. Training step

We train the motion trajectory decoder θtraj and
the FT feedback loop ϕft − θheight on real-world
unlabeled data Dreal = {τ exp}, collected by the

same pre-defined exploratory actions with III-A,
and few-shot human demonstration data Ddemo =
{(xdemo,∆hdemo, τ demo)1, . . . , (x

demo,∆hdemo, τ demo)N}.
1) Motion trajectory decoder θtraj

We train the wiping motion trajectory decoder θtraj using
Learning from Demonstration (LfD) [12] to generate the
wiping motion x̂task according to sponge properties.

The encoder-decoder model ϕsponge−θtraj takes FT trajec-
tory τ exp from Dreal as inputs and outputs the corresponding
motion trajectory x̂demo. Here, the encoder ϕsponge is pre-
trained on simulated data Dsim, with its weights frozen during
training on real data, and then deployed in the real world
(Sim2Real).

The motion trajectory decoder θtraj consists of 1 fully
connected layer with a dropout rate of 0.1. We adopt the
Mean Squared Error Ltraj between the generated motion
trajectory x̂demo and the demonstrated one xdemo represented
in the absolute coordinate from the base link (Eq. (2)).

Lmotion = EMSE(x̂
demo , xdemo) (2)

2) FT feedback loop ϕft − θheight

We train an FT feedback loop ϕft − θheight composed of
the FT encoder ϕft and the end-effector’s vertical position
decoder θheight to obtain a control input of the next time
step’s vertical position according to the contact state and the
manipulated sponge.

The FT encoder ϕft processes the FT history from the
demonstrations Ddemo ft = {τ demo

t-4 , . . . , τ demo
t }, encoding it

into the latent space Zft ∈ R6, which is designed to
represent the forces and torques along the x, y, and z axes.
The end-effector’s vertical position decoder θheight takes the
concatenated latent spaces Zsponge from the sponge properties
encoder ϕsponge and Zft from the FT encoder ϕft as inputs, and
outputs the next time step’s vertical displacement ∆ĥdemo

t+1 .
The FT encoder ϕft consists of 2 layers of temporal

convolutional network (TCN) [16] with 25 hidden channels
each and a dropout rate of 0.1. Inspired by [17], which
suggests that TCN has advantages in training efficiency and
training time over gated recurrent units (GRU) [18], we adopt
TCN as our sequence model. The end-effector’s vertical
position decoder θheight consists of 2 fully connected layers:
the first fully connected layer of 128 hidden dimensions
with ReLU as an activation function and a dropout rate of
0.1 followed by the final layer (the second fully connected
layer). We adopt the Mean Squared Error Lheight between
the predicted vertical displacement in the next time step
∆ĥdemo

t+1 and that of the ground truth ∆hdemo
t+1 (Eq. (3)).

Lheight = EMSE(∆ĥdemo
t+1 , ∆hdemo

t+1 ) (3)

C. Deployment

In the task execution, the robot performs a wiping motion
by combining offline horizontal (x, y) motion of x̂task and
online vertical (z) motion of ∆ĥtask

t+1 . First, the robot collects
unlabeled data Dtask = {τ exp} of the sponge being used
in the task through pre-defined exploratory actions. Then it



generates (x,y) planar motion x̂task from Dtask and replays the
motion offline. The FT feedback loop actively infers the next
vertical position ∆ĥtask

t+1 from the previous ∼ current force and
torque history Dtask ft = {τ task

t-4 , . . . , τ task
t }, and adapts online.

IV. EXPERIMENT SETUP

A. Wiping Task and Setup

We evaluated our method on a contact-rich wiping task
requiring adaptation to wiping surface height and sponge
properties. A 6-DoF UR5e robot arm equipped with a 6-axis
FT sensor and a sponge at its end-effector was controlled via
position commands. Demonstrations were collected kines-
thetically in free-drive mode.

B. Dataset

Unlabeled data: We performed two exploratory ac-
tions [12] to capture sponge stiffness and friction: (i) pressing
at 0.01 m/s for 2s, (ii) lateral motion at 0.05 m/s for 1s in
each direction. During these, 3-axis FT data was recorded
for 4s to obtain the FT trajectory τ exp ∈ R400×6. We
collected 1000 unlabeled data in simulation using dynamics
domain randomization with friction µ ∈ [0.0, 3.5], stiffness
k ∈ [0.5, 1000] N/m, and damping width d ∈ [0.02, 0.3] m.
One additional real-world unlabeled data τ exp was collected
using the same sponge as in the demonstrations.

Demonstration data: A human demonstrator wiped an
inclined table (different from experiment settings) with max-
imal force. 8 demonstrations using a sponge were collected.
We recorded the end-effector position and FT data for 10s
to obtain the motion trajectory xdemo ∈ R25×2, vertical
displacement trajectory ∆hdemo ∈ R25, and FT trajectory
τ demo ∈ R6×25.

C. Model Training

We applied Butterworth low-pass filtering to the data,
followed by normalization to the range [0.0, 0.9]. In the
pre-training step, the sponge properties encoder ϕsponge was
trained on 1000 unlabeled simulation data for 200 epochs
using the Adam optimizer with a learning rate of 0.0001.
In the training step, the motion trajectory decoder θtraj was
trained on 8 demonstrated motion trajectories xdemo for
10000 epochs, while the FT feedback loop ϕft − θheight was
trained on 8 demonstrated vertical displacement trajectories
∆hdemo and FT trajectories τ demo as time-series data with
a window size of 5 for 2000 epochs, where both used the
Adam optimizer with a learning rate of 0.001.

V. RESULTS AND DISCUSSION

To evaluate our method, we conducted experiments across
40 scenarios with varying table heights (V-A) and sponge
types (V-B) as illustrated in Fig. 3. We compared our method
with two baselines: (1) an imitation learning-based method
without FT feedback [12] (baseline), and (2) an admittance
control (AC) method. Since AC requires a predefined target
force, which is unavailable in our setting, we defined it as
the force applied when the sponge is compressed by 1cm.
AC computes vertical displacement ∆h using Eq. (4) [19]:

(a)

(b)

Fig. 3: Wiping under various settings: (a) low, high, and
sloped (table wiping); (b) vertical wall (wall wiping).

∆h =
FT 2 +BT ∆ht−1 +M (2∆ht−1 −∆ht−2)

M +BT +KT 2
(4)

where M = 0.5 kg, B = 5N/(m/s), K = 15N/m, and
T = 0.4 s. We also tested our model on a vertical wall using
the same model trained on table wiping. For each condition,
we evaluated the contact ratio, the average vertical force, and
its ratio to the reference force. The reference force for each
sponge was obtained by performing demonstrations using the
same procedure as in IV-B, and using the average vertical
force applied during those demonstrations as the reference.

A. Verification of the ability to adapt to changes in height

We varied the wiping table heights (low, high, sloped)
from the height used in the demonstrations (inclined table).
The results are shown in Fig. 4 (a).

To adapt wiping motions to changes in the wiping surface
height, the robot should apply a consistent force to the
sponge regardless of the height. With the same sponge, the
robot should wipe with as much force as possible to ensure
effective wiping. With the baseline method, the sponge was
in contact with the table only 0-44% of the time, and the
average force reached merely 4% of the desired reference
force. Specifically, in some cases with the low and sloped
tables, the average force turned positive because the sponge
did not contact the table, and the influence of gravitational
force from the sponge’s own weight became dominant. This
indicates that a robot did not effectively ’wipe’ and was
unable to adapt to changes in the wiping surface height.
In contrast, both AC and our proposed method maintained
constant contact in all 30 cases. However, AC applied only
an average of 42% of the reference force, whereas our
proposed method successfully maintained an appropriate
average force on the sponge across all heights, averaging
96% of the reference force. Furthermore, the applied force
did not significantly vary with changes in table height as
shown in Fig. 4 (a), with the standard deviation being only
about 5% larger than that of human demonstrations. This



(a)

(b)

Fig. 4: Transition in the ratio of average force to human-
demonstrated reference force (100% dotted line): (a) across
table heights, (b) across sponges.

indicates the robot’s ability to successfully adapt to height
variations.

B. Verification of the ability to adapt to changes in sponge

We varied the sponge properties from the sponge used
in the demonstrations (normal). We denote a sponge with
stiffness level m and friction level n as smfn, where
m,n ∈ 1, 2, 3. The results are shown in Fig. 4 (b). Adapting
the wiping motions to changes in the sponges’ physical
properties requires adjusting the force applied to the sponge
accordingly. With the baseline method, the robot failed to
maintain contact with the table when using sponges with
unseen properties. Specifically, with the low table, the contact
ratio was 0% for all 9 unseen sponges. Moreover, the average
force applied was less than 25% of the expected force (Fig. 4
(b)), averaging only 4% of the reference force. Therefore, the
baseline is unable to adapt to unseen sponges.

In contrast, both AC and our proposed method successfully
maintained contact at all time steps in all 30 cases. However,
AC merely maintained the predefined target force without
considering the sponge’s physical properties, resulting in
only 23-63% of the expected force and an average of 42%
of the reference force being exerted. Our proposed method,
on the other hand, applied an average force comparable to
the expected force, achieving over 63% and an average of
96% of the reference force, according to the type of sponge
(Fig. 4 (b)). This demonstrates that our method successfully
enables the robot to adapt to unseen sponge properties.

C. Wall Wiping

In real-world scenarios, cleaning involves more than just
wiping horizontal surfaces like tables; it may include tasks

TABLE I: Wall wiping results
Sponge Contact Ratio Avg. Force [N] (Ratio)
Normal 100% -14.5 (115%)

s1f1 100% -23.7 (104%)
s1f2 100% -29.5 (138%)
s1f3 100% -25.4 (119%)
s2f1 100% -29.0 (120%)
s2f2 100% -32.2 (107%)
s2f3 100% -28.9 (84%)
s3f1 100% -27.0 (87%)
s3f2 100% -33.5 (95%)
s3f3 100% -27.3 (74%)

TABLE II: The average ratio of the applied force in the z-
direction to the reference force exerted by the demonstrator.

Layer Window Size Demo proposedFewer More Smaller Larger Fewer More
Average (%) 159 152 182 170 190 114 97

such as wiping walls and other vertical surfaces. A key
challenge for robots in these tasks is the ability to adapt to the
physical properties of sponges and adjust the applied force in
real time as surface conditions change. Our method achieves
this adaptiveness independently of gravitational effects. In
previous tasks (V-A and V-B), the direction of the forces
applied to the sponge was aligned with gravitational accel-
eration. To further demonstrate that our method is effective
regardless of gravity’s influence, we tested our method in
a gravity-neutral setting—wall wiping (Fig. 3 (b))—where
gravitational forces do not affect the applied forces during
the task.

We evaluated the same model as V-A and V-B, trained
using the same demonstration data of table wiping. Due
to the setting changes, the end-effector’s frame rotated 90
degrees and the base-link’s x-axis came vertically to the end-
effector. We swapped the position outputs of the x-axis and
z-axis based on the base-link, and introduced an offset to
the z-axis positions. Although this might appear as a mere
transformation of output trajectories, the core challenge lies
in the method’s ability to adjust applied forces in a gravity-
independent manner. The results are shown in Table I.

Our method maintained contact with a wall in all 10 cases
and the applied forces were comparable to that expected,
averaging 104% of the reference force. This indicates that a
robot can adapt to wall wiping even with unseen sponges.

D. Ablation Study

We conducted ablation studies on (1) the number of layers
in the FT feedback loop, (2) the TCN window size, and (3)
the number of demonstrations. The results are summarized in
Table II. As shown, performance degraded when the model
had either fewer or more layers, or when the window size
was smaller or larger than the proposed setting. The best
performance was achieved using a two-layer feedback loop
with a window size of 5. Furthermore, 8 demonstrations
were sufficient for the model to learn adaptive force control
comparable to using more data.

VI. CONCLUSION

We proposed a method for contact-rich manipulation of
deformable objects that enables robots to adapt to envi-
ronmental and object property changes using only a few
demonstrations, by combining real-time time-series FT feed-
back with pre-trained object representations. Experimental
results on wiping tasks with varying wiping surface heights
and sponge properties demonstrated superior adaptability
compared to the baseline and AC methods. In future work,
we aim to extend the method to a wider range of objects by
leveraging large-scale multimodal pre-trained models.
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