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Fig. 1: Compliance Requirements. [Left] Flipping an item requires the robot to follow an arc trajectory (blue) while maintaining contact force. This
demands low stiffness in pushing directions (K2) and high stiffness elsewhere (K1). [Right] Wiping a vase necessitates 3D compliance adjustments in
both end-effectors to 1) hold the vase, 2) trace the marking, and 3) apply appropriate force without damage. Our algorithm aims to model these spatial-,
temporal-, and task-dependent compliance requirements from human demonstration data.

Abstract— Compliance plays a crucial role in manipulation,
as it balances between the concurrent control of position and
force under uncertainties. Yet compliance is often overlooked by
today’s visuomotor policies that solely focus on position control.
This paper introduces Adaptive Compliance Policy (ACP), a
novel framework that learns to dynamically adjust system com-
pliance both spatially and temporally for given manipulation
tasks from human demonstrations, improving upon previous
approaches that rely on pre-selected compliance parameters
or assume uniform constant stiffness. However, computing full
compliance parameters from human demonstrations is an ill-
defined problem. Instead, we estimate an approximate compli-
ance profile with two useful properties: avoiding large contact
forces and encouraging accurate tracking. Our approach en-
ables robots to handle complex contact-rich manipulation tasks
and achieves over 50% performance improvement compared to
state-of-the-art visuomotor policy methods. Project website with
result videos: adaptive-compliance.github.io.

I. INTRODUCTION

Manipulation often requires the concurrent control of both
position and force to achieve the desired outcome. This joint
objective can be captured by the concept of mechanical
compliance [16, 18, 7], where a low compliance prioritizes
position accuracy regardless of external forces, while a high
compliance allows large position deviation in response to
external forces, making the system “soft” during interaction.

The desired compliance for a robotics system is not a static
property; rather, it varies drastically depending on the task
objectives and the system’s state. For instance, consider the
flipping task in Fig. 1, the desired compliance:
• Varies temporally. For example, The system needs to be

less compliant before contact to prioritize precise position

tracking while becoming compliant upon contact.
• Varies spatially. For example, during the pivoting stage,

the system should be compliant only in the pushing direc-
tions (i.e., K2 direction) while maintaining high stiffness
in other directions to follow the arc motion (e.g., low
compliance in K1 direction).

• Varies from task to task. If we change to a different task,
such as wiping a vase in Fig. 1 [Right], both temporal and
spatial properties of the compliance will change in order
to satisfy the unique 3D motion and force requirements.

While the desired compliance can be obtained from opti-
mization given physical measurements of the manipulation
problem [10, 8], it remains a challenge to obtain compliance
parameters directly from human demonstration. Prior work
often requires known dynamics parameters [6] or repeated
demonstrations to statistically estimate human compliance
[1, 13, 4, 5]. These approaches cannot handle new scene
configurations or unexpected perturbations. As a result,
compliant policies either rely on pre-selected compliance
parameters for the target tasks [11] or assume uniform
constant stiffness across all directions [14].

In this work, we introduce Adaptive Compliance Policy
(ACP), a sensorimotor policy that learns to dynamically
adjust the system compliance both spatially and temporally
for a given manipulation task from human demonstrations.

Specifically, we derive a simple compliance labeling
method from classical mechanical analysis that eliminates
excessive forces while encourages precise tracking, under
mild assumptions about the tasks. This simple rule allows
us to approximate varying stiffness for every demonstration
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Fig. 2: Method Comparisons. [LEFT] shows the comparison between a) a typical visuomotor policy [2], b) a typical force-based compliant policy [14],
and c) Adaptive Compliance Policy. [Right] Visualization of virtual target (orange sqaures) and reference poses (yellow circles) inferred by Adaptive
Compliance Policy. The directional difference (orange arrows) between the virtual and reference poses encodes compliance direction.

episode with different object variations and scene configu-
rations. Our policy encodes reference pose, force and full
stiffness compactly using a virtual target.

We systematically evaluate the performance of our algo-
rithm on two real world contact-rich manipulation tasks:
object flipping and vase wiping. Our method achieves over
50% increase in performance compared to state-of-the-art vi-
suomotor policy methods. In summary, the main contribution
of the paper includes:

• Adaptive Compliance Policy formulation that is able
to dynamically adjust compliance to maintain desired
contact modes despite uncertainties and disturbances.

• A model-based method to compute spatial-, temporal-
varying compliance labels from human demonstrations,
making ACP training practical and scalable.

• A kinesthetic teaching system that allows demonstrations
with varying compliance profiles.

II. METHOD

A. Demonstration Collection and Compliance Control

We choose kinesthetic teaching instead of teleoperation
to collect human demonstrations in order for the operator to
easily demonstrate variable compliance behavior under direct
haptic feedback (see Fig. 3). The setup per arm includes one
robot manipulator to provide accurate position feedback, one
RGB camera to record visual information, and one force
torque sensor mounted near the robot hand.

We use admittance control [15] to give our robot compli-
ance. During demonstration, we specify zero stiffness, low
damping and low mass for the controller so the operator can
move the robot freely and demonstrate their own compliance
profile. During testing, we set a high damping and mass
value for the robot to maintain stability of the admittance
controller. Our learned policy predicts the stiffness profile of
the robot compliance, which has the most significant effect
on manipulation, especially at low speed.

B. Estimating Stiffness from Demonstrations

Human uses varying stiffness during manipulation. High
stiffness provides position accuracy under force disturbances,
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Fig. 3: Data Collection with Haptic Feedback. We designed a kinesthetic
teaching system with low-stiffness compliance that allows the operator to
demonstrate variable compliance behavior with direct haptic feedback.

while low stiffness allows safe contact engaging and main-
taining [9]. However, it is often an ill-conditioned problem
to estimate compliance parameters from a single human
demonstration due to the lack of variations [1]. Instead of
estimating the true human stiffness, we propose to find a
stiffness matrix with the following properties:

• It avoids huge internal forces in manipulation.
• It encourages accurate tracking of the desired motion.

We obtain such a stiffness matrix by first deciding the
direction of high and low stiffnesses, then specifying the
stiffness magnitude in those directions.

C.1 Stiffness direction: We propose the following simple
strategy to choose stiffness direction in the generalized space:
Use a low stiffness klow in the direction of the force feedback,
and a high stiffness khigh in all other directions.

We show in II-C that such single-axis low stiffness control
is sufficient to eliminate excessive contact force under mild
assumptions. Then we can use high stiffness in other direc-
tions to improve position tracking. Let K0 ∈RN be a diagonal
matrix with [klow,khigh, ...,khigh] on its diagonal, and S ∈ RN

be a matrix whose columns form an orthonormal basis of
RN with its first column as f/| f |. The stiffness matrix can
be written as:

K = SK0S−1 (1)

We use khigh in all directions when | f | is small.



C.2 Stiffness Magnitude The high stiffness khigh is set
empirically to support accurate position tracking. Since the
low stiffness direction is estimated from noisy force signal,
we found it helpful to let the low stiffness value decrease
continuously with the force magnitude:

klow =


kmax, | f |< fmin

kmax − (kmax − kmin)
| f |− fmin
fmax− fmin

, fmin ≤ | f | ≤ fmax

kmin, | f |> fmax
(2)

where kmax,kmin, fmax and fmin are parameters determined by
the hardware system.

C. Effectiveness of single axis low stiffness control

To explain why it suffice to use only one axis compliance
control to avoid excessive contact forces, we make the
following assumptions:
Assumption I: Contact force dominates all forces on the
robot. Other types of force, such as inertia force, friction
and gravity, are negligible comparing with contact force.
We ensure Assumption I by avoiding fast robot motion
and using lightweight objects. Denote v, f ∈ RN as the
generalized velocity and force vector of a manipulation
system, λ ∈Rn as the vector of contact normal forces. With
Assumption I, the contact imposes constraints on the system
through the Contact Jacobian matrix J as follows:

JT
λ = f , (3)

Jv ≥ 0. (4)
We then make two more assumptions:
Assumption II: Nonzero contact force: all made contacts
should have nonzero contact forces.
Assumption III: No pinching contacts: the cone formed by
rows of the Contact Jacobian J is contained in its dual cone.
Assumption II can be satisfied by making contacts clearly
in demonstrations. Assumption III means the contacts on the
robot are not too restrictive. Fig. 4 shows examples:

Fig. 4: Pinching Examples. Grey shape represents a robot tool, blue shape
represents a frictionless environment. First three examples are not pinching
contact, the last one is.

Excessive contact force happens in a manipulation system
when the high stiffness control conflict with the contact
constraints, both can be described as velocity constraints.
In other words, no excessive force will occur if all the
velocity constraints in the manipulation system form a fea-
sible system. By doing low stiffness control, our method
gives up control of velocity in the force feedback direction.
We show in the following theorem that this can guarantee
the feasibility of all velocity constraints, thus eliminating
excessive contact force:

Theorem 1. For a robot under external contact described
by Eq. 3, there exists a solution v that satisfies the contact

constraint 4 as long as it does not control its velocity in the
direction of feedback force f in the generalized space.

Proof. Not controlling velocity in the force direction means
the velocity has a free component:

v = v0 + k f = v0 + kJT
λ , (5)

where k is an arbitrary scaling factor, v0 denotes the com-
ponents of generalized velocity in other directions. Due to
Assumption II, the contact force λ must have all positive
components, JT λ represents a ray strictly inside the cone
formed by rows of J. Assumption III says this cone is
contained in its dual cone {x ∈ RN |Jx ≥ 0}, so

JJT
λ > 0. (6)

Then JV = JV0 + kJJT λ > 0 for large enough k.

D. Adaptive Compliance Policy

We formulate the policy as a diffusion process [2] for both
reference action and target stiffness.

1) Inputs and Encoding: We implement two encoding
strategies for the force/torque data: 1) temporal encoding via
causal convolution [17], which helps capture causal relations
from sequential data like force. 2) FFT encoding, where we
convert each dimension of the 6D force/torque readings into
a 2D spectrogram then pass to a ResNet-18 model with a
modified input channel of 6. Both image and force encodings
are combined using self-attention then concatenated with
robot end-effector poses and fed to the downstream diffusion
policy head as a condition following [2].

2) Outputs and decoding: Our policy output encodes the
position target, the stiffness matrix, and the reference force
in a 19-dimensional vector per robot arm:

• Reference pose: 9D pose vector following convention
in [2];

• Virtual target pose: 9D pose representing the actual
target for the low-level compliance controller to track;

• A scalar stiffness value klow.
During training, we compute the stiffness matrix from filtered
wrench data using Eq. 1, then compute the virtual target
following a 3D mechanical spring. The benefit of using
virtual target is to have a uniform target representation across
different robots: an impedance-controlled robot without FT
sensor can also execute the virtual target. During inference,
the full stiffness matrix is reconstructed following Eq. 1,
then sent to the low-level compliance controller for execution
together with the virtual target.

III. EXPERIMENTS

We evaluate our method in two contact-rich manipulation
tasks whose success depends on the maintenance of suitable
contact modes. We evaluate the following four policies, all
trained on the same dataset with the same number of epochs:
• ACP: Adaptive Compliance Policy, our approach;
• ACP w.o. FFT: same as ACP but with force encoded using

temporal convolution [17, 14] instead of FFT.



• Stiff policy: Diffusion policy [2, 3] with additional force
input. Outputs target positions.

• Compliant policy: Same as the [Stiff policy] except that the
low level controller has a uniform stiffness k = 500N/m.
Relying on low level robot compliance is common in
visuomotor policies [14, 19, 20, 12].

A. Task I: Item Flipping

The task is to flip up an item with a point finger by pivoting
it against a corner of a fixture (i.e., a wall), as exemplified
in Fig. 2. This task evaluates our method’s generalizability
towards noval items. The task has three main failure modes:
1) The finger loses contact and drops the item; 2) Extensive
pushing force violates robot force limit; 3) Motion gets stuck
at a bad pose. Since the item weight is light, the friction from
the item to the robot finger is also small, thus do not violate
Assumption I.

Test Scenarios. We ran 20 tests in each of the five scenarios
below, making 100 tests per algorithm:
• Training Items: Items appeared in training data.
• Unseen Items: Items not seen in training.
• Push&Flip: Items start 5cm away from the fixture and

needs to be pushed before flipping.
• Varied Fixture Pose: Two different fixture poses.
• Unstable Fixture: Lighter fixture that causes unstable flip-

ping movements. Require the policy to quickly adapt.

Results. The success rate is shown in Tab. I. Success is
defined as the item being rotated greater than 70 degrees.

TABLE I
FLIPPING-UP SUCCESS RATES (%)

Train Unseen Push Fixture Unstable All
Items Items &Flip Pose Fixture

ACP 90 95 95 100 100 96
ACP w.o. FFT 90 100 100 95 90 95
Compliant Policy 80 15 15 5 0 23
Stiff Policy 20 0 5 35 10 14

Findings. The two baselines [Compliant Policy] and [Stiff
Policy] have a few successes when they can exploit the
passive compliance in the system. They effectively applies
a force when the predicted trajectory is in collision with a
deformable item. When the item is rigid, or when the position
uncertainty is not in a convenient direction, the baseline
polices break the contacts and fail the task. On the contrary,
both variations of ACP tolerates a large range of position
uncertainties while maintain the needed contacts.

B. Task II: Vase Wiping

The robot needs to wipe off random markings on a vase
that is randomly placed on the table. This task tests our
method for handling large disturbance forces (friction). For
this task, each robot arm has two pieces of kitchen sponges
as wipers. We collected 200 demonstrations with various
vase poses, marking shapes, and colors. Each demonstration
includes one to five wipes to fully clean the markings.
Although the vase is heavy, it conveys force to the robot

only through contact force and friction, so Assumption I still
holds.

Test Scenarios. The following scenarios are tested:
• Small Mark×5: easier cases that need only one wipe.
• Large Mark×5: require multiple wipes.
• Perturbation before contact (PbC)×4: move the vase right

before the tool comes in contact with the vase.
• Perturbation after contact (PaC)×2: move the vase after

the tool is engaged to disturb the wiping motion.
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Fig. 5: Wiping Comparisons. [Top] APC: maintains contact and follows
desired trajectory. [Middle] Stiff Policy: Position noise causes excessive
force that breaks the tool. [Bottom] Compliant Policy: Safe contact, but
friction hinders wiping position accuracy and eventually loses contact.

Results. The quantitative results are summarized in Tab.
II. All policies demonstrated wiping behaviors. We define
success as the mark being cleaned (the remaining marks are
within 1cm×1cm) within three wipes.

TABLE II
WIPING SUCCESS RATES (%)

Small Large PbC PaC All

ACP 100 80 100 100 93.75
ACP w.o. FFT 100 60 75 100 81.25
Compliant Policy 60 20 25 100 43.75

Findings. In all scenarios, [ACP] safely engages and main-
tains contacts, while [Stiff Policy]’s contact force magnitude
varies greatly and broke its tool during the fourth test. [ACP]
maintains accurate tracking of the desired motion, while the
wiping motion of the [Compliant Policy] deviates from the
position target under friction. We also observe that our policy
with the FFT encoding wipes more efficiently than [ACP w.o.
FFT], suggesting that FFT encoding helps the policy to make
better decision on the next best wiping location.

IV. CONCLUSIONS
In this work, we show that Adaptive Compliance Policy is

an effective visuomotor policy for compliant manipulation.
Extensive real-world results show that our approach is able
to extract useful compliance from human demonstration, and
thereby significantly improve the success rate of two contact-
rich manipulation tasks.
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