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Abstract— Robots excel at repetitive or hazardous tasks, but
achieving human-like dexterity in contact-rich environments
remains challenging. Rigid robots struggle with stable contact
and force application. Learning from Demonstration helps, but
it faces difficulties in intricate tasks like powder grinding. This
paper introduces Diffusion Policies For Compliant Manipula-
tion (DIPCOM), a diffusion-based framework for compliant
control. By leveraging generative diffusion models, our policy
predicts Cartesian end-effector poses and adjusts arm stiffness
for precise force control. We improve multimodal force model-
ing, enhance diffusion policy integration in compliance control,
and demonstrate effectiveness in real-world tasks by comparing
DIPCOM with existing methods. See our project page for the
supplemental video omron-sinicx.github.io/DIPCOM

I. INTRODUCTION

Robots have great potential to improve daily life by
handling repetitive or hazardous tasks. However, achieving
human-like dexterity remains challenging, especially for
precise, contact-rich manipulation in dynamic environments.
Rigid robots struggle to maintain stable surface contact and
apply consistent force, making force-intensive tasks difficult.

Learning from Demonstration (LfD) techniques [1] en-
able robots to learn complex tasks by observing human
experts. However, tasks requiring high force, such as pow-
der grinding, present unique challenges. Rigid robots often
need mechanical compliance mechanisms [2] to ensure safe
interactions, but this makes precise tool positioning harder.

To address these challenges, we adopt compliance control
schemes that regulate forces via external sensors [3]. Our
prior work [4] introduced Comp-ACT, which combines force
information and compliance control with VAE-ACT policies.
While effective, it struggles with long-horizon tasks requiring
repetitive behaviors. To improve performance, we incorpo-
rate diffusion models, allowing adaptive force regulation
while maintaining precision and stability.

We propose Diffusion Policies For Compliant Manipula-
tion (DIPCOM), a diffusion-based framework for compliant
control. Diffusion models capture multimodal action distri-
butions and generate diverse behaviors [5]. By leveraging
these properties, our policy predicts both Cartesian EE pose
and stiffness adjustments, enabling robust force application.

Our contributions: First, a diffusion-based framework for
rigid robots to learn contact-rich manipulation via compli-
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ance control, enhancing force regulation. Second, A com-
parison of DIPCOM and Comp-ACT [4], demonstrating the
strengths of diffusion-based policies in force-intensive tasks.

II. RELATED WORKS

A. Learning from Demonstrations for Contact-rich Manipu-
lation

Learning from Demonstration (LfD) enables robots to ac-
quire complex contact-rich skills [6], leveraging force/torque
sensing for tasks like grasping [7], ironing [8], pouring
[9], and insertion [10]. Recent methods improve sample
efficiency using transformer-based models and teleoperation
systems like ALOHA [11] and UMI [12].

Most LfD approaches focus on position control or mechan-
ical compliance, whereas we emphasize active compliance
control. Building on Comp-ACT [4], we introduce DIPCOM,
leveraging diffusion models for enhanced force-aware manip-
ulation.

Inspired by prior work [13], [14] comparing imitation
learning methods, we evaluate DIPCOM against Comp-ACT
on real-world contact-rich tasks with rigid robots.

B. Diffusion Policies

Diffusion models, originally proposed by Ho et al. [15],
generate samples by refining noise through a stochastic
process. For a detailed survey, see [16].

In robotics, diffusion models capture multi-modal actions
and have been applied to motion planning [17], navigation
[18], human-robot interaction [19], and grasping [20]. Chi
et al. [21] demonstrated their efficacy in visuomotor policy
learning. Further advancements include skill acquisition from
language-annotated play data [22] and goal-conditioned dif-
fusion policies [23].

Most prior approaches rely on position or velocity con-
trollers, limiting effectiveness in contact-rich tasks. To over-
come this, we propose a force-conditioned diffusion policy
integrated with a compliance controller, enabling more pre-
cise force regulation. Our framework requires fewer demon-
strations than previous methods lacking compliance control
[14], significantly improving task performance.

III. METHODOLOGY

We introduce Diffusion Policies For Compliant Manipula-
tion (DIPCOM), a novel method for learning variable com-
pliance control from demonstrations using diffusion models.
Our approach predicts target EE poses and robot stiffness
parameters conditioned on current observations, including
the contact force data. A compliance controller uses these
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Fig. 1: Policy Framework: Left: Dataset collection framework. Middle: Observations O include images i:_1+, robot
Cartesian pose s;—1 ¢+, and measured force/torque f;_1 ¢, all encoded using a self-attention transformer. Right: During training,
actions a;—comprising the end-effector pose p, gripper pose g, and stiffness K—are processed through a noise scheduler
that adds Gaussian noise € over time steps n. These noisy actions are then input into the transformer decoder block. During
inference, Gaussian noise replaces the training noise, and the transformer decoder block predicts the actions a,

predictions to compute the final joint position commands that
allow robots to move compliantly at the predicted stiffness.
[Fig- 1] illustrates the architecture of DIPCOM.

A. Problem Formulation

Learning from demonstration (LfD) aims to enable robots
to acquire new skills by autonomously observing and imi-
tating human-provided demonstrations. In our approach, the
policy learns to predict a sequence of absolute Cartesian
EE pose and stiffness parameters given current observation
O, including RGB images Z € RY*Wx3  the latest F/T
sensor reading F € RS, and proprioception data S € R”.
Demonstrations are collected using the VR teleoperation
interface introduced in [4], which streams reference actions
A and robot observations O during execution.

The predicted action A = {p, g, k} comprises the absolute
EE pose, the gripper action, and the stiffness parameter. The
absolute EE pose, denoted as p = {r,0} € R, includes a
position vector r € R3 and an orientation vector o € RS,
To handle discontinuities in the axis-angle representation,
we use the 6D continuous orientation representation from
Zhou et al. [24], which offers a smooth and unique encoding
suitable for learning. The gripper action g € R! represents
the desired gripper width, and the stiffness parameter k € RS
corresponds to the diagonal of the stiffness matrix. Each
action A is executed through a compliance controller, and
during teleoperation, the operator can switch between two
predefined stiffness modes using the VR grip button.

B. Diffusion Policies For Compliant Manipulation

Our dataset is inherently multi-modal, containing diverse
observations and corresponding actions. We aim to learn a
policy distribution 7(.A|I, F,S) from task-specific demon-
strations using Diffusion Policies For Compliant Manip-
ulation, a classifier-free conditional diffusion model that
generates actions .4 from observations O.

The diffusion process consists of a forward stage that
progressively adds noise and an inverse stage that denoises

the data conditioned on observations. We adopt the De-
noising Diffusion Implicit Model (DDIM) formulation [25]
for deterministic denoising, enabling efficient inference with
adjustable steps.

Diffusion Policies For Compliant Manipulationfollows the
architecture of [21], employing an encoder-decoder trans-
former [26] with a ResNetl8 vision backbone (without
pretraining). Processed images, concatenated with force and
robot state data, are input into the transformer encoder, while
cross-attention is applied to noisy actions in the decoder.

The model is trained with mean squared error loss:
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During inference, the model estimates the original action
iteratively:
ay —/Bay
vi=p

where aj' is the noisy data at step n, § is the cumulative
noise scale, and d? is the estimated original action.

a?_l = /Bn—ld(t) + 1- ﬁn—l .

C. Action Sequence Generation

Applying diffusion models to contact-rich manipulation
is challenging due to prolonged surface interactions, where
inconsistent action predictions can degrade performance.
Prior works [21], [12] predict a fixed number of actions,
discarding part of the horizon, which can cause jerky
transitions—acceptable for simple tasks but problematic in
contact-rich scenarios.

To improve stability, we predict at a higher frequency
than previous methods, which typically generate 16 actions
per horizon at 20 Hz. Our approach averages 48 actions
per horizon, with some tasks requiring longer sequences,
enabling finer control.

Diffusion over longer horizons can accumulate errors
when only a portion of predictions is applied. To mitigate
this, we extend the Temporal Ensemble method from [11],
applying remaining actions to subsequent steps, smoothing



Fig. 2: Contact-rich manipulation tasks used for evaluation. A - Powder grinding. B - Pencil eraser. C - Bimanual round
peg insertion. D - Bimanual cuboid peg insertion.

TABLE I: Task conditions

TABLE II: A - Powder grinding results

transitions and ensuring stable performance in contact-rich
tasks.

IV. EXPERIMENTS

We evaluate DIPCOM on four contact-rich manipulation
tasks requiring precise force application, shown in [Fig. 2|
Our method is compared against Comp-ACT [4], a CVAE-
based policy that uses a transformer encoder to process
observations and a decoder to predict Cartesian EE poses
and stiffness. Both policies use RGB images, F/T readings,
and Cartesian EE poses for action prediction.

Experiments were performed on a dual-arm setup using
URS5e robots with wrist-mounted F/T sensors. Each robot
was equipped with an Intel RealSense SR305 camera, with
a third static camera providing an external view. Demon-
strations were collected from three co-authors using the
teleoperation setup in [4] to ensure diverse motion strategies.

Each policy was trained per task, and task conditions
are summarized in Results consistently show that
DIPCOM outperforms Comp-ACT in fine-grained contact
manipulation.

We now describe each task in detail and discuss the
comparative performance of both methods.

e« A - Powder grinding: The robot grinds powder using
a ceramic pestle and pauses periodically to check the
powder’s state. Wrist camera images guide the grind-
ing process. Success is measured by the percentage of
fine powder produced (Table TI). DIPCOM achieved 56%
compared to Comp-ACT’s 10%, despite similar applied

Task Conditions Percentage of fine powder produced
Task # # # Stiffness Modes Average  Standard Deviation
of of of Position Rotation Human demonstrations ~ 76.67% 8.4%
demos. | views | arms Tow high | Tow | high DIPCOM 55.88% 13.54%
A 40 1 1 300 800 100 | 150 CompACT 9.96% 1.39%
B 60 2 1 800 1200 | 150 | 300
C/D 60 3 2 gé ggg éggo igg ?28 TABLE III: B - Pencil eraser task results

Percentage Erased

Method Average (SD) Success Rate
Comp-ACT 26.0% (16.6%) 0.0%
DIPCOM 77.32% (19.48%) 52.3%

force (Fig. 4). This improvement stems from DIPCOM’s
ability to reproduce circular grinding motions and evaluate
intermediate outcomes (Fig. 3).

e« B - Pencil eraser: The robot uses a rubber eraser to
remove pencil marks from a notepad. Success is measured
by full mark removal and percentage erased (Table III)).
DIPCOM achieved a 52.3% success rate, while Comp-
ACT failed all 20 rollouts. As shown in Comp-
ACT applied insufficient force and suffered from poor
alignment, while DIPCOM adapted its force and trajectory
to better match the target.

« C /D - Bimanual insertion tasks: One robot arm holds
a peg while the other positions the mating part. The task
requires precise coordination for successful insertion and
release (Table TV). While both methods had similar success
rates, DIPCOM displayed more adaptive behavior, dynam-
ically adjusting the pose of the supporting arm during
insertion. This led to more robust executions and novel,
effective strategies not seen in the original demonstrations.

V. DISCUSSION
Both DIPCOM and Comp-ACT achieved similar success
in bimanual insertion tasks but exhibited distinct behav-
iors, especially in long-horizon tasks like powder grinding
and pencil erasure. These tasks require repetitive, adaptive
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Fig. 3: Powder Grinding performance by the DIPCOM policy. The policy imitates the demonstrated behavior of pausing
every few seconds to look at the powder’s state before continuing the grinding process. Position Z indicates the height of

the tip of the pestle relative to the mortar.
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Fig. 4: A - Powder Grinding: Force profile comparison be-
tween the demonstrations, DIPCOM, and Comp-ACT. Bold
lines and shaded areas represent the average and standard
deviation of normal contact force.

TABLE IV: Success rate for bimanual insertion tasks

Task Name Comp-ACT  DIPCOM
C - Bimanual Round Insertion 100% 100%
D - Bimanual Cuboid Insertion 95% 95%

actions rather than linear sequences. Comp-ACT initially
performed well but struggled with maintaining fluid motion,
often freezing mid-task during up-and-down erasing or cir-
cular grinding. In contrast, DIPCOM adapted more flex-
ibly, sustaining smooth, continuous actions despite greater
execution variance. These findings align with Jia et al. [5],
reinforcing the behavioral distinctions between VAE-based
and diffusion-based methods.

In force application, both policies applied force more
conservatively than human demonstrators. While Comp-
ACT was more consistent, it often fell into cyclic force
patterns. DIPCOM, despite greater variance, better matched
human force patterns due to its diffusion-based modeling.

Limitations

DIPCOM is more sensitive to hyperparameters than
Comp-ACT and demands higher computational resources,
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Fig. 5: B - Pencil Eraser: Force profile comparison between
demonstrations, DIPCOM, and Comp-ACT.

making it susceptible to control frequency fluctuations. Fu-
ture work will explore hyperparameter tuning and alternative
action spaces, such as relative trajectories [12].

This study also used a relatively small number of demon-
strations compared to similar works [21], [14]. Scaling up
datasets could improve generalization, enabling a single
policy to handle variations within a task—for example,
learning a general powder grinding policy rather than training
separately for each instance.

VI. CONCLUSIONS

This work introduced Diffusion Policies For Compliant
Manipulation (DIPCOM), a diffusion-based framework for
compliant control in rigid robots. By leveraging diffusion
models, our approach captures multimodal action distribu-
tions, predicting Cartesian end-effector poses while adjusting
stiffness to regulate contact forces. We provided guidelines
for diffusion-based compliant control and demonstrated DIP-
COM’s advantages over prior methods in contact-rich tasks.

Future directions include expanding datasets for improved
generalization, refining force-processing mechanisms, and
enhancing policy architectures for more precise force-aware
inference.
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