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Fig. 1: (Left) We propose a neural dynamics-augmented diffusion policy, where a few-shot diffusion policy is enhanced with model-based
planning to generalize to broader scene configurations. The green region represents the supporting region covered by the few-shot diffusion
policy, while the red region denotes the space outside this region, which can be covered through model-based planning using the learned
dynamics models. (Right) The proposed method demonstrates strong performance across various tasks. The deep green region represents
the area covered by the few-shot diffusion policy, while the light green region shows the expanded coverage after augmentation.

Abstract— Imitation learning has been proven effective in
mimicking demonstrations across various robotic manipulation
tasks. However, to develop robust policies, current imitation
methods, such as diffusion policy, require training on extensive
demonstrations, making data collection labor-intensive. In con-
trast, model-based planning with dynamics models can effec-
tively cover a sufficient range of configurations using only off-
policy data. Yet, without the guidance of expert demonstrations,
many tasks are difficult and time-consuming to plan using the
dynamics models. Therefore, we take the best of both model
learning and imitation learning, and propose neural dynamics
augmented imitation learning that covers a large scene con-
figurations with few-shot demonstrations. This method trains
a robust diffusion policy in a local support region using few-
shot demonstrations and rearranges objects outside this region
into it using offline-trained neural dynamics models. Extensive
experiments across various tasks in both simulations and real-
world scenarios, including granular manipulation, contact-rich
task and multi-object interaction task, have demonstrated that
trained with only 1 to 30 demonstrations, our proposed method
can robustly cover a significantly larger area than the policy
trained purely from the demonstrations. Our project page is
available at: https://dynamics-dp.github.io.

*Equal contribution. 1Peking University 2University of Illinois Urbana-
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I. INTRODUCTION

Imitation learning [1–4] has been a powerful paradigm
for teaching robots to perform complex tasks by mimicking
expert demonstrations. However, the efficacy of imitation
learning is often contingent on the availability of a substantial
number of demonstrations. For instance, current methods like
Diffusion Policy [5–7] and Action Chunking with Transform-
ers [8–10], typically require over 200 demonstrations in tasks
such as inserting T (Figure 1 left). When the number of
demonstrations is limited, shown in Figure 1 (a, b, c), the
performance becomes restricted to small regions.

On the other hand, model-based planning can effectively
generalize across diverse configurations [11–13]. Learned
models offer a number of advantages. First, training data for
dynamics models is easy to obtain, from offline sources, self-
play or simulations, enabling offline training of dynamics
models. Second, it only requires task-agnostic data, eliminat-
ing the need for task-specific demonstrations. However, even
with the model, planning for complex long-horizon tasks can
remain challenging, as sampling precise trajectories is often
difficult and time-consuming. In such cases, expert demon-
strations can be particularly helpful in guiding manipulation.

https://dynamics-dp.github.io
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Fig. 2: Our Proposed Framework. (a) Collecting few-shot human demonstrations that could cover a small region in the task space.
(b) Diffusion policy trained on the few-shot human demonstrations is robust in the local supporting region, but lacks robustness in outside
configurations. (c) Model-based planning, guided by learned dynamics models, generates actions to rearrange objects from diverse initial
poses to the supporting region. (d) The whole policy, using trajectories from (c), enables robust manipulation across a much larger space.

We propose neural dynamics augmented diffusion pol-
icy, taking the best of both model learning and imitation
learning to complement each other. Our framework trains
neural dynamics models that apply to different object cat-
egories to explore the entire task space, and a diffusion
policy on a few demonstrations to ensure robustness in
a local supporting region, with detailed visualization and
analysis in Figure 3 and 4. For any object in an arbitrary
initial configuration, the dynamics model guides the object
into this region, where the few-shot diffusion policy can
robustly complete the rest of the task. Shown in Figure 1
(Left), to accomplish a complex task such as the contact-rich
InsertT, we imitate few-shot demonstrations to robustly cover
a small local region. Then, the neural dynamics model trained
by offline interactions between the robot and the T-shape,
manipulates the object from random initial configurations
into the local region, allowing the robust imitation policy
to handle the rest of the task. This manipulation strategy
significantly expands the coverage area by augmenting the
policy space with neural dynamics models.

II. METHOD

A. Problem Formulation and Preliminary Background

At each timestep t, policy takes the current observation ot
(e.g., robot state, object point cloud, image and pose), option-
ally with k previous observations (ot−k, ot−k+1, ..., ot−1),
and proposes the robot action at to execute. The policy is
successful when the robot manipulates the object to achieve
the goal after a sequence of actions.

With a set Q of m demonstrations composed
of observation o and action a pairs, i.e., Q =
{(o1, a1), (o2, a2), ..., (om, am)}, diffusion policy [5]
aims to model the conditional distribution P (At| Ot, Ât)
using diffusion-based models (Denoising Diffusion
Probabilistic Models, DDPM). Here, At refers to the
predicted action sequence At = (at, ..., at+Ta

), where Ta

is the predicted action horizon. Ot refers to the observation
history, including object states (e.g., poses, 3D point cloud
or its downsampled particles) and proprioception states,
Ot = (ot−To

, ..., ot), where To is the history horizon. Ât

refers to action history, Ât = (at−To−1, ..., at−1).

B. Robust Few-Shot Imitation in a Local Supporting Region

The robustness of imitation methods requires extensive
demonstrations. For example, for InsertT shown in Figure 2,
the T shape can be placed in any positions and orientations,
and thus extensive demonstrations with T shapes densely
covering the large configuration space are required.

However, collecting extensive demonstrations is expen-
sive. When the demonstration budget is limited, their dis-
tribution significantly impacts the policy robustness. We
leverage the observation that even a small number of demon-
strations can ensure policy robustness if they are concentrated
within a small local supporting region with high local den-
sity. Specifically, given a set Q of m (m ≤ 30) demonstra-
tions, with densely distributed object initial configurations
(including positions and poses) to be {x1, x2, ..., xK}, the
local supporting region R that diffusion policy DR trained
on Q maintains high robustness can be represented as the
convex region of these demonstrations:

R = {
K∑

k=1

αkxk|
K∑

k=1

αk = 1, αk ≥ 0 ∀k}.

Shown in Figure 2 (a, b), trained on a small number
of densely distributed demonstrations (each demonstration
includes a trajectory from the initial configuration to the tar-
get), diffusion policy DR works robustly on different object
configurations (T colored in green) in the local supporting
region. More visualizations and analysis on the robustness
of the few-shot DR in R are demonstrated in Figure 3.

C. Neural Dynamics Model with Better Spatial Coverage

While DR demonstrates great robustness in the convex
region R, it could not work well to configurations outside
R (T colored in red as shown in Figure 2 (b)). To enhance
robustness, we first introduce an offline learned task-agnostic
dynamics model that captures object dynamics and interac-
tions within the scene. We then demonstrate how this model
extends the space coverage of few-shot diffusion policy.

To be more specific, a perfect dynamics model f predicts
the next state s′ given the current state s and action a:

s′ = f(s, a).
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Fig. 3: Qualitative Analysis on InsertT. With few-shot demonstrations, while the original diffusion policy demonstrates robustness only
in a certain local region, our proposed method enables generalization to a much wider space. Demonstrations in Diffusion Policy show
the few-shot (10) demonstrations, and those in Ours show dynamics augmented demonstrations cover the large space.

In various robotic scenarios where the ground truth object
state is difficult to acquire, we use the observed object pose
ξ ∈ SE(3), keypoints (p1, p2, ..., pk) (k is the number of
keypoints), or particles pt ∈ RN×3 (N is the number of par-
ticles) sampled the scanned point cloud using Farthest Point
Sampling (FPS) [14] as the object state representation ŝ (in
the following paragraphs, we use s to denote the estimated
object state for simplicity), and capture the dynamics of the
object in the scene using neural networks M . We train M
with MLPs or GNNS as as backbones [11, 15]. We randomly
initialize the object in the scene, with the estimated state s,
execute a random action a, and estimate the new state s′ of
the object. With the new state predicted by M denoted as
s̃′, we use the Mean Squared Error (MSE) distance between
s̃′ and s′ as the loss function for training M (d denotes the
state dimension):

s̃′ = M(s, a),

LM =
1

d

d∑
i=1

||s̃′i − s′i||
2
2 .

D. Model-Based Planning with Neural Dynamics Models

Equipped with Model Predictive Path Integral (MPPI) [16]
planning algorithm, the robot can manipulate the objects
from any initial configuration s to target configuration sT
in the large space U , by optimizing the sampled action

trajectories using the distance between sT and M -predicted
object state s̃P after {at} as the loss function L(sT , s̃P ):

{at} = argmin{at}L(sT , s̃P ),

s̃P = M(s, {at}),
L(sT , s̃P ) = ∥sT − s̃P ∥22.

E. Neural Dynamics Augmented Few-Shot Diffusion Policy

To achieve a policy π with robustness in the large space,
instead of directly planning the object to the direct target sT ,
we change the target of the planner to the center state sR of
the local supporting region R and first plan the object to sR:

sR =
1

K

K∑
i=1

xi,

{at} = argmin{at}L(sR, s̃P ),

s̃P = M(s, {at}),
L(sR, s̃P ) = ∥sR − s̃P ∥22.

Although the actual object state s′R after planning can
deviate from the target sR by a margin δsR due to modeling
and execution errors, this error δsR is limited, and thus the
local supporting region R can easily cover the planned s′R,
as shown in Figure 2 (c). Therefore, followed by DR robust
in R, the object manipulated from the initial s to s′R can
further be robustly manipulated from s′R to the target sT .
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Fig. 4: Qualitative Analyses. While diffusion policy only covers specific regions, our method covers a significantly larger space with
model-based planning to manipulate diverse objects into the local supporting region, followed by the few-shot diffusion policy. For
DustPan, “Planning” denotes this step is fulfilled by model-based planning. For HangMug, red denotes success and blue denotes failure.

III. EXPERIMENTS

A. Tasks and Baselines

We conduct evaluation over 4 long-horizon complex tasks:
• InsertT that requires inserting a T-Shape into a slot.
• DustPan that sweeps sparse granular into the dustpan.
• Stow that stows a book onto the bookshelf with books.
• HangMug that hangs a randomly located mug on rack.
Figure 1 (right) shows example trajectories of these tasks.
We compare with 2 representative manipulation methods:
• Model-Based Planning that generates robot actions to

achieve the final target using planning methods.
• Diffusion Policy trained on few-shot demonstrations.
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Fig. 5: Data Efficiency.

B. Quantitative and Qualitative Results and Analysis

Shown in Table I and II, our method outperforms baselines
by a large margin. For Diffusion Policy trained on only a few
demonstrations, it could only work in the local region. For
Model-Based Planning, it is difficult and time-consuming to
sample precise trajectories that satisfy these complex tasks.

TABLE I: Quantitative Evaluation in Simulation.

Method InsertT DustPan Stow

Diffusion Policy 0.1472 0.4144 0.1563
Model-Based Planning 0.1087 0.4307 0.5172

Ours 0.9827 0.8986 0.9655

TABLE II: Quantitative Evaluation in the Real World.

Method InsertT HangMug DustPan Stow

Diffusion Policy 2 / 40 4 / 20 3 / 20 8 / 50
Model-Based Planning 1 / 40 9 / 20 5 / 20 22 / 50

Ours 32 / 40 15 / 20 17 / 20 42 / 50

We demonstrate qualitative results and analysis in Figure 3
and Figure 4. It is clear that, diffusion policy trained on
few-shot demonstrations can only cover a specific small
region with robustness, and will easily fail in manipulating
objects initialized outside the region. With the augmentation
of neural dynamics models, the whole policy will effectively
cover a larger space by guiding the arbitrarily initialized ob-
ject to the supporting region through model-based planning,
followed by the few-shot diffusion policy in this region.

Furthermore, to analyze the data efficiency of our method,
i.e., how our policy maintains robustness when the demon-
stration number is continuously decreasing, we compare the
original diffusion policy with our method by conducting ex-
periments respectively using 1 to 100 human demonstrations
in InsertT. As shown in Figure 5, the original diffusion
policy continuously faces performance decrease when the
number of demonstrations decreases, while our dynamics
augmented method empowers diffusion policy with the ro-
bustness even when there exist only a few demonstrations.
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