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Abstract— This paper revisits the planar slider-pusher sys-
tem, a classic illustration of contact-rich manipulation, from
the perspective of differential flatness. Under quasi-static as-
sumptions, we derive a general kinematic model that holds for
arbitrary planar slider shapes and circular pusher geometries.
We show that this system exhibits differential flatness, enabling
direct trajectory planning and controller synthesis using the
center of mass as a flat output. Leveraging this property,
we propose two control strategies for trajectory tracking: a
cascaded quasi-static feedback strategy and a dynamic feedback
linearization approach. We validate these strategies through
closed-loop simulations incorporating perturbed models and
input noise, as well as experimental results using a physical
setup with a finger-like pusher and vision-based state detection.
The real-world experiments confirm the applicability of the
simulation gains, highlighting the practicality and robustness
of the proposed methods and the model’s utility in real-world
robotic manipulation tasks.

I. INTRODUCTION

Recent advances in robotic manipulation balance between
model-based control and increasingly data-driven learning
approaches. This paper revisits the planar slider-pusher sys-
tem as a minimal, yet rich, example for contact-rich manip-
ulation, highlighting its differential flatness property and the
performance of a simplified model-based approach. Flatness
enables system trajectories to be described through a lower-
dimensional flat output, simplifying planning and feedback
control.

Slider-pusher dynamics have been extensively studied,
from early foundational work [1], [2], [3] to more recent
data-driven approaches [4], [5], [6]. Many models adopt the
quasi-static assumption, where inertial effects are negligible
compared to friction [7], [8], [9], [10]. Under this simpli-
fication, a differential kinematic model relates pusher input
velocity to the slider’s planar motion — though prior studies
focus mainly on rectangular sliders.

Even with these assumptions, the system remains hy-
brid and under-actuated [7], often requiring computation-
ally intensive planning and model-predictive control. To
address this, we introduce an additional assumption: neg-
ligible friction at the pusher contact point relative to support
forces. This yields a compact quasi-static model applicable
to arbitrary slider shapes with circular pushers. Based on
this model, we identify conditions for differential flatness,
a structural property of nonlinear systems [11], [12] that
simplifies control synthesis.
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Fig. 1: Overlay of snapshots from one of the cameras,
showing dynamic feedback linearization in action on the
setup. The reference trajectory is shown in blue, while the
executed path is yellow.

Exploiting this flatness, we develop two closed-loop posi-
tion tracking controllers for rectangular sliders. The first is
an ad-hoc cascaded feedback approach; the second applies
dynamic feedback linearization, which is feasible since flat
systems are also feedback-linearizable [13], [14], [15]. Both
strategies focus on position tracking and are validated in
simulation under model perturbations and noise, as well as
in real-world experiments as seen in Fig. 1.

II. SYSTEM MODEL

We model a planar slider-pusher system with arbitrary,
smooth slider geometries and a spherical pusher, as seen in
Fig. 2. The system state is given by x =

(
x y θ ϕ

)⊤
,

where x and y denote the Cartesian coordinates of the slider
in the global frame of reference, θ denotes the slider’s planar
orientation and ϕ thus determines the contact point. Further,
we assume that the velocity of the pusher, expressed in the
global frame of reference, can be controlled. Thus we can
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Fig. 2: Geometry of the slider-pusher system.



define an input variable, u ∈ R2, as u =
(
ux uy

)⊤
, where

ux and uy denote the global velocity of the pusher. The
smooth slider shape is described by a function r(ϕ), which
defines the distance from the center of the pusher to the
contact point as a function of the contact angle ϕ. The pusher
radius is denoted by rp, and we assume that the pusher is
always in contact with the slider.

Two key assumptions simplify the dynamics:
• Inertial forces are negligible (quasi-static limit surface

model).
• Friction at the contact point is negligible compared to

the slider-ground interaction.
The relation between contact geometry and motion leads

to a compact, reduced model after expressing u in a rotated
local frame:

u = R(θ)ũ,

ũ = R(ϕ)˜̃u,

˜̃u = R(α)˜̃̃u,

(1)

The derivation is omitted for brevity, but the final equations
governing the system dynamics are:

ẋ = −P (ϕ) sin(θ + ϕ+ α)˜̃̃uy,

ẏ = P (ϕ) cos(θ + ϕ+ α)˜̃̃uy,

θ̇ = Θ(ϕ)˜̃̃uy,

ϕ̇ = Φx(ϕ)
˜̃̃ux +Φy(ϕ)

˜̃̃uy,

(2)

where

P (ϕ) =
β2r(ϕ)2 + β2r′(ϕ)2

β2r(ϕ)2 + β2r′(ϕ)2 + r(ϕ)2r′(ϕ)2
,

Θ(ϕ) =
r(ϕ)r′(ϕ)

√
r(ϕ)2 + r′(ϕ)2

β2r(ϕ)2 + β2r′(ϕ)2 + r(ϕ)2r′(ϕ)2
,

Φx(ϕ) =
1√

r(ϕ)2 + r′(ϕ)2 + rp(1 + f(ϕ))
,

Φy(ϕ) = −Φx(ϕ)
r′(ϕ)r(ϕ)

(
r(ϕ)2 + rp

√
r(ϕ)2 + r′(ϕ)2

)
β2r(ϕ)2 + β2r′(ϕ)2 + r(ϕ)2r′(ϕ)2

.

(3)
The parameter β describes the slider’s resistance to ro-

tational motion relative to translation, reflecting how easily
the object spins under external forces. The angle α accounts
for the local orientation of the slider’s surface normal at the
contact point and is determined entirely by the geometry via

tan(α) = −r′(ϕ)

r(ϕ)
. (4)

For a rectangular slider, with a geometry characterized
by a width 2a and a height 2b, one can further verify that
α = −ϕ. It follows that ˜̃̃u = ũ. The circumference itself is
parametrized as follows:

r(ϕ) = b
1

cos(ϕ)
,

r′(ϕ) = b
tan(ϕ)

cos(ϕ)
.

(5)

Substitution of these conditions into the model (2) yields:

ẋ = − β2

β2 + b2 tan(ϕ)2
sin(θ)ũy,

ẏ =
β2

β2 + b2 tan(ϕ)2
cos(θ)ũy,

θ̇ =
b tan(ϕ)

β2 + b2 tan(ϕ)2
ũy,

ϕ̇ =
cos(ϕ)2

b
ũx − cos(ϕ)2

b
(b+ rp)

b tan(ϕ)

β2 + b2 tan(ϕ)2
ũy.

(6)
We can compare this model with earlier work where the

contact point was described using its distance, d, relative to
the symmetry axis of the slider [16]. It follows that

d = b tan(ϕ),

ḋ = b
1

cos(ϕ)2
ϕ̇.

(7)

One then easily verifies that the following alternative model
representation can be retrieved, as documented earlier:

ḋ = ũx − (b+ rp)
d

β2 + d2
ũy. (8)

In conclusion, for uniform pressure distributions we have that

β2 = 1
3

√
a2 + b2. (9)

III. DIFFERENTIAL FLATNESS ANALYSIS

Differential flatness is a powerful property of certain
nonlinear systems that allows all state and input variables
to be expressed as functions of a so-called flat output and
its derivatives [12], [11]. If such a flat output exists, system
trajectories can be freely designed without solving differen-
tial equations, making flatness a useful tool for planning and
control.

For the quasi-static slider-pusher system, we explore
whether flat coordinates exist — starting with the slider’s
centre of mass as a candidate. Manipulating the system equa-
tions reveals that flatness can only be achieved if the slider’s
boundary r(ϕ) satisfies a specific geometric condition:

r2 + 2(r′)2 − r′′r = 0. (10)

This equation characterizes a family of shapes for which
the slider-pusher system is flat with respect to its centre of
mass. Notably, it implies a fixed relationship between the
slider’s contact geometry and the flatness property. Once
this condition is satisfied, the remaining states and inputs
— including the slider’s orientation θ, contact angle ϕ, and
the inputs ũx, ũy — can be fully reconstructed from the
flat output (position) and its derivatives. This flatness result
naturally extends to any static point on the slider. If the
centre of mass is a flat output, any fixed offset point on
the slider also qualifies, since its position is simply a rigid
transformation of the centre of mass.

Solving the geometric condition yields the explicit form:

r(ϕ) = A
1

cos (ϕ−B)
, (11)



which corresponds to polygonal sliders, such as rectangles,
when applied piecewise. Each face of a polygon satisfies this
relation, and the complete shape is stitched together across
its edges. This highlights that flatness is a general property
for polygonal slider-pusher systems.

After some algebraic manipulation, we can derive the
following flat expressions:

θ = − arctan

(
ẋ

ẏ

)
+Bi,

ϕ = arctan

(
β2

Ai

ẋÿ − ẍẏ√
ẋ2 + ẏ2

3

)
−Bi,

ũx = (Ai + rp)
ẋÿ − ẍẏ

ẋ2 + ẏ2
+ β2 ẋ

...
y − ...

x ẏ√
ẋ2 + ẏ2

3

+ 3β2 (ẍẏ − ẋÿ) (ẋẍ+ ẏÿ)√
ẋ2 + ẏ2

5 ,

ũy =

(
1 + β2 (ẋÿ − ẍẏ)

2

(ẋ2 + ẏ2)
3

)√
ẋ2 + ẏ2.

(12)

For rectangular sliders, we limit our discussion to the
bottom face. The other faces are simply permutations of this
solution. In this case, we have B = 0 and A = b. If we use
the relative distance to parameterize the contact point rather
than the contact angle, the flat expression becomes

d = β2 ẋÿ − ẍẏ√
ẋ2 + ẏ2

3 . (13)

IV. CONTROL STRATEGIES

As mentioned before, flatness is a useful property for
control synthesis. It is particularly advantageous to solve
path planning problems, and is used abundantly in tracking
control [17], [18], [19], [20], [16], [21], [22], [23], [24], [25],
[26], [27], [28], [29]. Flatness-based trajectory optimization
applied to slider pusher was investigated by [16], [30], [31].

This section discusses two closed-loop tracking strategies
tailored specifically to flat slider-pusher systems. First, we
will discuss an ad-hoc cascaded (quasi-)static feedback strat-
egy. Second, since the system that we will address is flat, and
therefore proven to be dynamic feedback linearizable [13],
[14], [15], we also develop such a strategy.

Given the developments in the previous sections, we can
work with the following rectangular slider model. Note that
we can write this model in general state-space form

ξ̇ = f(ξ) + g(ξ)υ, (14)

with state ξ = (x, y, θ, d), and input υ = (ũx, ũy).
The slider-pusher system is under-actuated. Therefore we

will only pursue tracking of a desired position signal, given
by xd and yd. The position signal may be static or dynamic.
In the latter case, we also assume to have access to every
time derivative of the desired position signal. Every control
strategy assumes access to a measurement of the slider-
pusher state, ξ. Two control strategies are proposed based
on the flatness property:

1) Quasi-Static Feedback Control: The first control
strategy is a cascaded ad-hoc approach that decomposes
the tracking problem into nested subgoals, each stabilized
on a different time scale. Because the slider cannot align
position, orientation, and offset simultaneously with only
two control inputs, the controller sequentially enforces these
objectives: first driving the slider toward the desired position,
then adjusting its orientation, and finally steering the pusher
offset. Each stage applies an exponential error decay law to
generate reference signals for the next loop, ensuring stability
and smooth convergence.

At the outer loop, reference velocities ẋr and ẏr are
computed based on position errors. These are then used to
derive a reference orientation θr and normal velocity ũy,r.
The desired angular velocity θ̇r follows from θr, which leads
to calculating a target offset dr. Finally, the offset velocity ḋr
and the tangential input ũx,r are determined, completing the
cascade. This structure can be enhanced by replacing first-
order error decay with second-order dynamics, using gain
parameters tuned to reflect decreasing time constants through
the cascade.

2) Dynamic Feedback Linearization: Our second control
strategy exploits the fact that any differentially flat system
is also dynamic feedback linearizable [14]. This enables the
design of linear controllers in a transformed extended state-
space.

Definition 1 (Dynamic feedback linearization [32]):
A system is dynamic feedback linearizable if there exist
auxiliary states γ ∈ Rnγ and dynamic feedback of the form

γ̇ = a(ξ, γ) + b(ξ, γ)ν,

υ = α(ξ, γ) + β(ξ, γ)ν,

with an extended transformation χ = η(ξ, γ) such that the
extended system becomes fully linearizable: χ̇ = Aχ+Bν.

Designing a tracking controller then reduces to choosing
ν to stabilize the linear system, and applying the inverse
transformation to compute the control input υ for the original
nonlinear system. A simple stabilizing choice is linear state
feedback:

ν = νd +K(χd − χ). (15)

For our system, the flatness implies χ = (x, y, ẋ, ẏ, ẍ, ÿ)
and ν = (

...
x ,

...
y ). Since ξ ∈ R4 and χ ∈ R6, the auxiliary

state must satisfy γ ∈ R2. Two practical choices for γ are:
a) Choice 1.: Define γ1 as the translational speed

magnitude and γ2 as the angle of the acceleration vector:

γ1 =
√

ẋ2 + ẏ2, γ2 = − arctan
ẍ

ÿ
. (16)

This choice has a singularity when γ2 = θ or d = 0, where
the acceleration is ill-defined.

b) Choice 2.: To avoid the singularity at d = 0, define
γ2 as the acceleration component along the body-fixed y-
axis:

γ1 =
√

ẋ2 + ẏ2, γ2 = ÿ cos(θ)− ẍ sin(θ). (17)

This choice avoids singularities except when γ1 = 0,
which corresponds to the system being at rest.



In both cases, the corresponding feedback control law is
derived by defining ν as a stabilizing feedback law for the
linear Brunovský form system. A typical choice uses third-
order error dynamics:

νx =
...
x d +K2(ẍd − ẍ) +K1(ẋd − ẋ) +K0(xd − x),

νy =
...
y d +K2(ÿd − ÿ) +K1(ẏd − ẏ) +K0(yd − y).

(18)
The gains K0, K1, and K2 are chosen such that the closed-

loop dynamics are asymptotically stable, for instance using
LQR design. The LQR cost function is:

J =

∫ ∞

0

(
x⊤Qx+ u⊤Ru

)
dt. (19)

The optimal K is then computed via the solution to the
Algebraic Riccati Equation.

This approach yields a structured and globally stable
controller as long as the auxiliary variable singularities are
avoided.

V. SIMULATION AND EXPERIMENTAL VALIDATION

We validate the proposed control strategies through a com-
bination of simulation studies and real-world experiments
conducted on a planar manipulation platform. The physical
setup consists of a finger-like robotic pusher, paired with a
vision-based state estimation using markers. The platform
is designed to emulate the simplified kinematic model as-
sumed in our derivations, but naturally introduces unmodeled
effects such as surface friction variability, sensor latency,
and mechanical compliance. Two representative tasks were
selected for evaluation: static point and dynamic trajectory
tracking. In both scenarios, the controller must ensure stable
convergence of the pusher-slider system to the reference,
despite disturbances and estimation noise.

Fig. 3 shows the comparison between simulated and exper-
imental results for both tasks. Fig. 3a and Fig. 3b depicting
the behavior for static point stabilization, where the goal is
to control the slider to a fixed target location. Fig. 3c and 3d
illustrate the performance for a dynamic trajectory tracking
task, where the slider is commanded to follow a smooth,
time-varying reference path.

The experimental results demonstrate strong agreement
with simulation, highlighting the robustness and practical
viability of the flatness-based control designs. Both the cas-
caded feedback and dynamic feedback linearization strate-
gies successfully compensate for real-world imperfections,
offering smooth, repeatable convergence to the reference
despite limited model knowledge and sensor noise. This con-
firms the controllers’ potential for real-time implementation
in more complex manipulation and robotic pushing scenarios.

Making a direct comparison between the two control
strategies is hard, since we are not yet working with opti-
mally tuned control gains. However, at first sight we observe
that the dynamic feedback linearization with the second
choice of auxiliary state performs slightly better than the
other two strategies, especially the first choice. This is likely
due to the fact that the second choice of auxiliary state avoids
the singularity at d = 0, which is a common occurrence in

(a) Static point simulation (b) Static point experiment

(c) Dynamic trajectory simula-
tion

(d) Dynamic trajectory experi-
ment

Fig. 3: Comparison of simulation and experimental results
for the static point (top) and dynamic trajectory (bottom)
tracking tasks. The left column shows simulation results,
while the right column presents experimental results. All
three methods are shown with a full line, while the reference
trajectory for the latter is shown with a black dotted line.

practice. The first choice of auxiliary state, on the other hand,
can lead to numerical issues when the system is close to this
singularity.

VI. CONCLUSION AND OUTLOOK

Our study shows that simple, structured models like the
slider-pusher system can provide a solid foundation for
designing feedback controllers that perform reliably in real-
world manipulation tasks. Despite the complexity of contact-
rich dynamics, these models capture the essential behavior
well enough to enable stable and effective closed-loop con-
trol, even in the presence of disturbances, model mismatches,
and sensing imperfections.

Through both simulation and hardware experiments, we
demonstrated that feedback strategies rooted in basic geo-
metric and kinematic insights — rather than high-fidelity
modeling or data-intensive learning — can deliver strong
performance for tasks involving physical interaction. This
highlights the enduring relevance of model-driven control,
especially as a complementary component in systems that
may eventually integrate learned policies or adaptive mod-
ules.

In a broader context, our results encourage revisiting and
refining simple, interpretable models as a practical design
tool for robust robot manipulation, particularly in scenarios
where safety, stability, and real-time execution remain criti-
cal.
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[14] J. Lévine, “On the equivalence between differential flatness
and dynamic feedback linearizability,” IFAC Proceedings Volumes,
vol. 40, no. 20, pp. 338–343, 2007, 3rd IFAC Symposium
on System Structure and Control. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1474667015366052
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