A constrained RL control policy for contact-rich non-prehensile mobile
manipulation

Toannis Dadiotis'2, Mayank Mittal®*, Nikos Tsagarakis®, Marco Hutter?

Abstract— We develop a learning-based controller for a
mobile manipulator to move an unknown object to a desired
position and yaw orientation through a sequence of contact-
rich pushing actions. The proposed controller for the robotic
arm and the mobile base motion is trained using a constrained
Reinforcement Learning (RL) formulation. We demonstrate its
capability in experiments with a quadrupedal robot equipped
with an arm. The learned policy achieves a success rate
of 91.35% in simulation and at least 80% on hardware in
challenging scenarios. Through our extensive hardware experi-
ments, we show that the approach demonstrates high robustness
against unknown objects of different masses, materials, sizes,
and shapes. It reactively discovers the pushing location and
direction, thus achieving contact-rich behavior while observing
only the pose of the object. Additionally, we demonstrate the
adaptive behavior of the learned policy towards preventing the
object from toppling. Further details for this work can be found
in the full paper [1].

I. INTRODUCTION

Moving and reorienting heavy or bulky objects along
large and complex real-world pathways requires combining
mobility and manipulation. This task is achievable through
non-prehensile pushing actions without requiring a dedicated
gripper or the need to grasp a handle on the object. Addition-
ally, non-prehensile pushing interaction may yield relative
motion between the robot and object at the contact point, e.g.
contact sliding or relative rotation. This motion necessitates a
controller capable of reactively adapting the pushing location
and direction by dynamically breaking and making contact
at new locations with the object. We refer to this contact-rich
behavior as contact switching.

Achieving online contact switching behavior during push-
ing is challenging with model-based techniques [2], [3] or
controllers that rely solely on force/tactile feedback [4], [5].
As a result, recent works leverage Reinforcement Learning
(RL) to address contact switching [6] and demonstrate no-
table robustness against unknown objects [7]. Despite these
achievements, the method in [6] is limited to fixed-base
manipulators pushing a lightweight, small object on a table.
Jeon et al. [7] achieve object pushing with the base of a
mobile robot, without an arm. In both cases, the policies
generate only 2D planar motion commands, which are in-
sufficient for manipulating objects that are prone to toppling
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Fig. 1. The control pipeline used for moving and reorienting an object to a
planar goal (darker object). Push policy is the proposed mobile manipulation
controller. The motions are included in the supplementary video |(link).

(e.g. objects with a thin base, large CoM height, or high
friction coefficient flooring). To address this limitation, we
focus on interacting with objects by pushing them to different
3D locations on their surface, enabling more versatile and
stable manipulation.

In this work, we present a learning-based controller for
a mobile manipulator to dynamically move and reorient
unknown objects using non-prehensile pushing actions. We
tackle the task complexity by using a state-of-the-art con-
strained RL algorithm [8] that minimizes reward engineering
efforts and can satisfy the various constraints of the task,
e.g. arm actuator limits, self-collisions. The control policy
is validated across diverse scenarios in simulation and real-
world experiments with a quadrupedal manipulator. The
policy’s action space consists of cartesian commands for
the base and joint-space commands for the mounted artic-
ulated arm; thus, we directly control the arm in joint space.
Even though the proposed control policy only observes the
object’s 6D pose, it achieves robustness against unknown
objects with differing physical properties and learns online
contact switching to push the object to various planar goal
poses. The resulting behavior demonstrates the adaptability
of the pushing location, which is crucial for avoiding object
toppling and keeping the object balanced.

II. METHOD

We train a push policy for mobile manipulators to repose
objects on a plane. The policy provides cartesian commands
for the mobile base and joint position commands for the first
five joints of the arm. We freeze the 6™ joint since it is only
useful when using a gripper. The velocity commands are sent
to a pre-trained locomotion controller to convert them into
joint position commands for the legs. Both the push policy
and locomotion policy are inferred at the same frequency of
50 Hz. The overall architecture is shown in Fig.


https://youtu.be/wGAdPGVf9Ws?si=j9YNlEufzQIGlPz4

A. Locomotion control

The approach is validated using a quadrupedal mobile
platform, ANYmal, with a six DoF robotic arm mounted
on it. The locomotion controller is a student policy similar
to the one in [9]. It accepts the base command u{™¢ =
(Vz, Vy, wz, ¢, 0. h) € R and outputs leg joint position
targets. The six components of the command ugfl’g‘i consist
of linear velocity in x and y directions, angular yaw velocity,
roll and pitch angle, and height position, respectively. While
training the proposed controller (push policy), we freeze the

pre-trained locomotion controller.

B. RL goal pushing environment

We implement the task of moving and reorienting an
object using NVIDIA Isaac Lab [10] for training the RL
policy with 4096 parallel simulated robots for 20000 itera-
tions. We modified the Proximal Policy Optimization (PPO)
implementation from [11] with the changes in [8] to derive
the constrained PPO formulation.

Notation: In the following we use p € R?, R € SO(3),v €
R? and w € R? to denote position, rotation matrix, linear and
angular velocity of a body’s frame, respectively. The body
frame name is denoted as a right subscript and the reference
frame as a left superscript (omitted when the reference frame
and body frame are the same). We use the letters w, b, o, g,
and e to refer to the world, robot base, object, object goal,
and arm end-effector frames, respectively. For the relative
position between two body frames, two letters are used at
the right subscript, e.g. ’p,. is the relative position of the
end-effector w.r.t. the object frame expressed in the robot
base frame. We use = and || - || to express a given vector’s
unit vector and length, respectively.

Environment & commands: The RL training environment
consists of multiple object-centered environments (parallelly
simulated), each reset when there is an episode timeout (20
sec after the last reset) or when there is an unrecoverable
object or robot fall. Fig. [2JA shows a single environment after
a reset when the robot, object, and object goal positions are
resampled in polar coordinates as described in the caption
of Fig. 2JJA. We consider success when the distance between
the object’s frame and the goal is less or equal to dgyccess =
10 cm and the angle between their orientation is less or equal
t0 Osuccess = 10 deg.

During exploration in simulation, we want to encourage
interactions of the robot with the whole surface of the object
so that the RL agent discovers which part of the object is
better to interact with. To that end, a reaching target position
“p, is randomly sampled on the object’s vertical surfaces,
as shown in Fig. 2B, at each environment reset. This target
is used in the reward function to guide the robot EE towards
interacting with the object, as explained in Section [[I-D]

C. Observation & action space

This work uses an asymmetric actor-critic approach [12],
[13] where the critic can access privileged information avail-
able only in simulation and noiseless. All observed quantities
are described in Table [I It is worth noting that the only
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Fig. 2. A) The object’s position is set to the environment origin (W), the
robot base position is randomly sampled within an origin-centered annulus
(yellow-shaded area), and the object goal (dark rectangle) within a circular
area (dashed line). The robot, object, and goal are spawned with a random
yaw orientation. B) Sampling on the object surface encourages interaction
with different parts of the object during training.

TABLE I
OBSERVATIONS FOR THE ACTOR (0¢) AND CRITIC (ot,og’r). UNLIKE THE
ACTOR, THE CRITIC RECEIVES NOISELESS OBSERVATIONS.

Description Dim| Noise
®poe | EE-object relative position w.r.t. base 3 U(£0.02)
®R, | object rotation matrix w.r.t. base 9 | U(£0.01)
Agq; | arm joint position readings w.r.t. de- 5 U(£0.01)

fault configuration
o vy, robot base linear velocity 3 | U(£0.01)
wy, robot base angular velocity 3 | U(£0.20)
4, arm joint velocity readings 5 | U(£0.50)
9. | projected gravity unit vector 3 U(£0.05)
®pog | object-goal relative position w.r.t. 3 U(+0.02)
base
°R, | goal orientation w.r.t. object 9 | U(£0.01)
a¢_1 | previous actions 11 -
Ae EE-object contact state 1
bpcom object CoM position w.r.t. robot base 3
m object mass 1
oP" d object dimensions 3 -
t I, object’s principal moments of inertia 3
b, object linear velocity w.r.t. robot 3
%w, | object angular velocity w.r.t. robot 3
Ksh one-hot vector for object shape 2

information regarding the object included in the actor’s ob-
servation vector o; € R4 is the object 6D pose and, thus, the
deployed policy has no knowledge about the object size and
dynamics. The action vector a; = (Augli?, Agi™?) € R
consists of base commands Auggg‘i for the locomotion policy
described in Section and arm joint position commands
Aq?md € R5. The actions generated by the policy refer to
deviations from a default base state (zero velocities, zero
orientation, and default height of 0.5 m) and a default arm
configuration, respectively. Thus, they are transformed into
absolute values before being passed on to the locomotion
policy and low-level joint impedance controllers. In Table[I]
the quantities observed by the critic 0f"*¢ = (o4, o}") €
R™3, including the privileged information o}".

D. Rewards & constraints

In this section, we describe the reward and constraint terms
included in the training. We tune them manually to achieve



TABLE 11
REWARDS AND CONSTRAINTS USED FOR TRAINING ALONG WITH THE INITIAL AND FINAL VALUES OF THE CONSTRAINT HYPERPARAMETER pj* ¥
FROM CAT [8] AND THEIR RESPECTIVE CURRICULUM SCHEDULE OVER THE LEARNING ITERATIONS.

Rewards Constraints
. exp < H'“’Kg—’”’KO“) Description Formulation Dim f 2 Iterations
1,6 =exp | — —
73 base command limits cbase = max(ufmd —u, PP ylow —qemdy 16 | 0.01 — 0.2
. exp ( 1“perl ) arm command limits o™ = max(g§md — g """ gl —g5m?) | 5 | 0.05 0.9
2,t = T .2 v !
- i . AgCTd_pgod o
! arm action rate limits cim = lq“% — ghm 5 0 — 0.05 0 —s
o arm joint position limits | ¢, = max(g; — q;pp”,qé."w —q;) 5 | 005—09 | 12-103
) — — - T
r3,t = exp <% - 1) arm joint velocity limits | ¢4, = |¢;] — g 5 0.05 — 0.9
2 -
arm joint torque limits | e, = || — ‘r?m 5 0 — 0.015
T4t = v ra leg joint torque limits Criteg = [Tilegl — ‘r?{zg 12 0 — 0.01
‘Aubase,tiAubase,tfll . ..
exp { — P) + . . 1 , if a collision occurs,
T4 undesired robot-object | c.oyp = 0 herwi 18 1.0 No
exp ( \quf?d—qu,Tfl\) & self-collisions » otherwise. curriculum
- -
71a o] — 0™ L if ||Pwp|| > 0
object balance Copi = 101 ] bH ’ 1 0.25
obJ 0 , otherwise.

convergence in simulation and then transfer the policy to the
hardware zero-shot without further adjustments.

4 .
Rewards: The total reward r{°* = %" _ w;r;, consists of

the sum of the reward terms shown in Table [l The term
r1, is the main task reward, which encourages minimizing
the distance between the eight keypoints of the object and
the keypoints of the goal, where these are defined as the
vertices of the oriented bounding box of the object (similarly
to [7], [14]). We denote the position of the keypoints of
the object and its goal as “K, € R?* and YK, € R*,
respectively. The reward term rp; encourages the agent to
minimize the distance between the arm EE and the reach
target (“'p,) sampled on the object’s surface at each episode.
The weight wo of this term is downscaled by a factor of 4
after 1500 learning iterations. We do this to encourage the
robot EE to approach and interact with different parts of the
object at the beginning, and we do not care about accurately
reaching the sampled position. The term 73 ; rewards object
linear velocity with direction towards the object goal. We
do not include the magnitude of the velocity in this term to
avoid the robot pushing the object aggressively. Finally, the
term 74, comprises action rate regularization. If the task is
successful, we increase the task reward to 71 ; = 2, which is
two times the maximum possible value of this term, so that
the robot learns to achieve the specified tolerance instead of
staying close to it.

Constraints: As proposed in [8], we apply curriculum
learning over most of the constraints by increasing the
maximum probability for reward termination along training
(linearly increasing p;j™ during training). In practice, at
the beginning of the training, we encourage exploration by
limiting the effect of constraint violation on the reward termi-
nation probability. We emphasize achieving strict constraint
satisfaction for undesired collisions, arm joint position, and
velocity limits. The undesired collisions include robot self-
collisions and collisions of the object with the robot base,
legs, and the arm’s shoulder, upper arm, elbow, and forearm
links. We also include a constraint for the base command

Aug;’g‘i using as limits the ranges used during the training
of the locomotion controller. Finally, the object balance
constraint requires that the object’s inclination angle be less
than a specified threshold #"™ = 10°. All the constraints
used for training, their dimension, and the curriculum applied

are shown in Table [

E. Domain randomization & deployment

To render the learned policy robust for deployment on
the hardware, we randomize several factors in the simulated
environment, including the object-floor friction, the object’s
mass, center-of-mass (CoM), dimensions, and shape (cuboids
and cylinders). The actor’s observations are subject to addi-
tive uniform noise, as specified in Table | and the robot’s
mass and initial joint positions are, as well, randomized
around nominal values.

During deployment, we rely on an external motion capture
system to get the object and robot base 6D pose information
needed to derive the observation o;.

ITII. RESULTS & EVALUATION
A. Robustness against unknown objects & contact switching

The trained policy achieves a success rate of 91.35%,
evaluated in simulation for 4096 runs. We extensively test
the controller on the hardware to move and reorient different
objects. The tests were conducted on the protective floor mats
of our testing area, which have high friction and can even
exhibit small gaps along the seams of the mat. This renders
the task more challenging. In the next paragraph, we present
the success rates for these tests.

We command the robot to sequentially move and reorient
the object between two fixed goal poses in the space, as
shown in Fig. [3] We do not manually move the robot before
sending a new object goal; the policy successfully moves
the robot to the appropriate side of the object to push in
the correct direction. We tested the learned controller with
objects of varying mass, size, shape, and material (Table [[TI),
with yaw angle differences A6, of 0°, 90°, or 180° between
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Experimental validation of the proposed controller for sequentially moving and re-orienting an object between two goal poses. The robot pushes

a plastic box of 6.4 kg from one goal to another. The goal poses are shown as green boxes. Snapshots of previous times are shown with lower opacity.
The robot successfully goes around the object to push from the correct side towards the goal (1-2, 5).

TABLE III
SUCCESS RATE DURING HARDWARE EXPERIMENTS WITH OBJECTS OF
DIFFERENT MATERIAL: PLASTIC (P), CARDBOARD (C), WOOD (W) AND
DIFFERENT SHAPE: CUBOID (CU), CYLINDER (CY)

Object Mass Size A, # of face Success
[kgl [em?] [deg] | switches / goal rate [%]
P-CU 6.43 | 60x34x40 | 180 0.90 91.6
C-CU | 5.30 | 50x50x53 | O 0.23 92.9
C-CU | 8.32 | 50x50x53 | 90 0.75 83.3
C-CU 4.5 100x50x53| O 0.14 80.0
W-CU | 6.30 | 40x40x60 | 180 1.00 91.6
C-CU 13.30| 50x50x60 | O 4.80 83.3
C-CY | 245 ®30x40 0 - 83.3

the two goal poses. As goals are sent sequentially, the yaw
angle difference between the object and the new goal matches
A0, (+ the success tolerance). The policy achieves a success
rate of at least 80%. For the cuboids, we report in Table m
the average contact face switches per goal. A face switch
is considered when the robot switches contact to a different
face of the cuboid. It can be seen that for higher object yaw
orientation changes A#,, the controller makes more contact
and face switches to properly align the object with the goal,
while for Af, = 0 the robot can most of the time achieve
the task without face switch. For cylindrical shapes, a face
switch cannot be defined; contact switching is still observed
in any case. The contact-rich behavior of the controller for
all objects can be seen in the accompanying video.

B. Adaptability to object size

As mentioned in Section [[IE} the dimensions of the
objects during training were randomized. We investigate the
adaptability of the policy with respect to the object’s xy-
footprint since thin objects can be prone to toppling on
high-friction surfaces. To that end, we select six object xy-
footprint sizes equally distributed across the training range
and simulate the policy for 1000 successful episodes per size.
We fix the object height, mass, center of mass, and friction
values to constant and disable the additive observation noise
to evaluate the effect of the object’s base. In Fig. ] we
report the height distribution of the robot EE expressed in
the world frame while in contact with the object. The policy
learns to push lower for objects that have smaller bases. It
is of particular interest that the policy does not observe any
explicit information regarding the object size or dynamics.
This implies that the robot’s adaptive behavior is based on
the object 6D pose observation. In practice, the robot adapts
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Fig. 4. Boxplot of the arm EE height for objects with rectangular bases

of different sizes. The policy pushes lower for objects with smaller base.

Fig. 5.
cylinder. The shaded region consists of the time when the cylinder is tilted
due to an initial push. The base height and orientation (pitch down, roll)
contribute towards pushing power immediately after the object tilts.

Arm EE height, base height, and orientation while pushing a thin

the pushing location to lower when the object is inclined. We
observed such behavior while testing on the real hardware.
As shown in Fig. B the policy can approach and push
a thin cylinder on a flooring of high-friction mats. When
the cylinder starts tilting, the robot reactively changes the
pushing location to lower and avoids object toppling.

IV. CONCLUSION

We proposed a constrained RL-based controller for dy-
namically moving and reorienting objects with a mobile
manipulator, which is a relatively long mobile manipulation
task. The generated motion behaviors are characterized by
online contact switching and robustness concerning unknown
objects of different mass, size, and shape on a high friction
floor. By only relying on object pose information, the con-
troller changes the object pushing location to lower for thin
objects on high-friction surfaces.
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