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Abstract— Learning from demonstrations is a powerful
paradigm for robot manipulation, but its effectiveness hinges on
both the quantity and quality of the collected data. In this work,
we present a case study of how instrumentation, i.e. integration
of sensors, can improve the quality of demonstrations and
automate data collection. We instrument a squeeze bottle with
a pressure sensor to learn a liquid dispensing task, enabling au-
tomated data collection via a PI controller. Transformer-based
policies trained on automated demonstrations outperform those
trained on human data in 78% of cases. Our findings indicate
that instrumentation not only facilitates scalable data collection
but also leads to better-performing policies, highlighting its
potential in the pursuit of generalist robotic agents.

I. INTRODUCTION
Although robots can surpass humans for specific tasks

in carefully constructed environments, human-level perfor-
mance is still beyond the reach of general-purpose robots in
unstructured environments [1]. One way to approach human-
level manipulation performance with robots is to make them
imitate human behaviour through demonstrations. This has
proven to be effective in teaching complex manipulation
skills to robots [2]–[5]. However, learning even a single task
in a controlled environment can take 100 or more demonstra-
tions [2], [3]. For a robot to handle multiple complex tasks
in unstructured environments, the data requirements grow
tremendously. Large datasets for robot pre-training exist [6]–
[8], but current systems still require task-specific fine-tuning
for complex tasks or diverse environments [4].

In addition to larger datasets and algorithmic advances, we
can attempt to improve the quality of the demonstrations to
increase imitation learning capabilities. Both [9] and [10] de-
termined evaluation metrics for the quality of demonstration
trajectories, and showed that better demonstrations can result
in a better policy for the same amount of data. Xu et al. [11]
have shown that reinforcement learning (RL) agents gen-
erate high-quality trajectories through reward maximisation,
making them better suited for fine-tuning generalist policies
compared to human demonstrations.

A different approach was followed in [12] for the task of
raspberry harvesting: instead of teleoperating the robot and
recording trajectories as demonstrations, human demonstra-
tors manipulated an instrumented, i.e. sensorised, strawberry
phantom. The robot behaviour was then tuned to match hu-
man behaviours as experienced by the strawberry. Instrumen-
tation was also used in [13] for learning to solve a Rubik’s
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(a) Instrumented bottle used for au-
tonomous data collection.

(b) Electronics for the in-
strumented bottle.

(c) Gripper mount. (d) Robot setup.

(e) The Gello [14] teleoperation arm. (f) Human operator.

Fig. 1: Experimental setup for learning to squeeze a constant
flow from a bottle based on demonstrations, collected either
by a human or by an autonomous controller relying on
instrumentation data.

cube with a single anthropomorphic robot hand. Specifically,
the sensor data provided accurate state information of the
Rubik’s cube to shape the reward function.

The idea of using additional state information during the
learning phase, and later deploying without this privileged
information, using only sensory inputs that are available
in the real-world setup, is also found in works that learn
robot behaviours in simulation [15], [16]. In [15], sim-to-
real quadrupedal locomotion is achieved by first training a
teacher policy that has access to privileged state information
of the robot, allowing it to quickly achieve high performance.
The teacher is then used to guide the learning of a student
controller that only uses sensors available on the real robot.
Similarly in [16], the student-teacher paradigm is used to



learn in-hand reorientation. The teacher used the object
orientation to quickly learn appropriate actions, after which
the student was trained to match the teacher’s outputs while
relying on occluded visual observations of the objects.

Instrumentation like in [12], [13] can be a way to obtain
similar privileged information directly in the real world,
potentially allowing for faster learning and/or more perfor-
mant policies and avoiding the need for sim-to-real transfer,
which already is a significant challenge on its own. We have
previously applied it to learned cloth manipulation [17] and
state estimation [18]. In this work, we present a case study
on the use of instrumentation for demonstration learning,
focusing on the task of squeezing a bottle to maintain a
constant liquid flow. We will show that (1) instrumentation
can be used for automated collection of demonstrations by
a “teacher” agent, (2) that these demonstrations are more
qualitative than those collected by human teleoperators, and
(3) that this quality difference improves the performance of a
policy trained on those demonstrations, compared to training
on human demonstrations.

II. MATERIALS & METHODS

A. Task Description

With the aim of examining how instrumentation can be
applied to demonstration learning, we chose the task of
squeezing a constant flow of liquid from a bottle. The
flow rate is directly related to the pressure inside the bottle
near the opening, so a constant flow can be achieved by
integration of a pressure sensor and controlling its output.

Plastic bottles are popular test objects in robotic manipu-
lation [19]–[23] because they are ubiquitous in human envi-
ronments and deformable, which presents unique challenges
for e.g. state observation. In [21], [23] specifically, accurate
dosing of liquids was tackled with tactile sensing. Potential
applications of this skill include culinary arts [23] and the
oiling or glueing of mechanical parts.

B. Hardware setup

1) Instrumented Bottle: A commercial condiment squeeze
bottle is instrumented by integration of a MS5803 waterproof
pressure sensor, see Fig. 1a. The supply and communication
wires of the sensor are pulled through a small hole in the
side of the bottle. To make the sensor PCB as well as the
cable hole waterproof, silicone (Silicone Addition Colourless
50 by Silicones and more) is applied all around it with
a syringe. The silicone is allowed to cure for 30 minutes
before application, so that it is viscous enough to not
seep away immediately. For readout, we repurposed a PCB
from our open-source, modular, wireless Smart Textile [18],
featuring an nRF52840 microcontroller. The PCB, along with
a 160 mAh LiPo battery, a micro USB charging interface,
and an on/off button, is placed in a 3D printed holder and
attached to the flip-top cap of the bottle with hook-and-loop
tape. The bottle is filled with a mixture of water and 2 wt%
xanthan gum for thickening. The bottle opening is a small
hole without valve.

2) Robot Setup: A Schunk EGK-40-MB-M-B gripper is
mounted to a UR3 robot, as seen in Fig. 1c. One of the fingers
is a standard Robotiq 2F-85 fingertip, the other is one of our
custom tactile fingertips based on a magnetic transduction
principle [24]. The fingertip has a 2-by-2 grid of taxels with
a 6 mm pitch, each taxel outputs local 3D contact force
estimation. A custom 3D-printed adapter allows for attaching
Robotiq-compatible fingertips to the Schunk. In addition, an
Intel RealSense 435 camera and an Arduino Nano 33 BLE
(for readout of the tactile fingertip) are attached to the Schunk
gripper via custom mounts. The instrumented bottle is placed
in a wooden holder before the robot grasps it. When the
bottle is grasped, it is turned over above a Kern PCB2000-1
scale. The scale has a resolution of 0.1 g.

3) Teleoperation Setup: The trigger of a Gello [14] arm
(Fig. 1e) is configured to control the opening of the Schunk
gripper. A human operator (Fig. 1f) squeezes the trigger
while visually maintaining a constant flow.

C. Data Collection Protocol

Five different datasets are collected. For the first, different
people manually squeeze the instrumented bottle in whatever
way they deem fit, while attempting to maintain a constant
flow by looking at the stream. This lasts 10 seconds, during
which time the pressure in the bottle is recorded. Five people
were each given a full bottle, and performed 10 s trials until
the bottle was empty. This resulted in 34 trials.

The other four datasets involve the setup in Fig. 1: a train-
ing dataset collected by a PI (PID with zero derivative gain)
controller, a training dataset collected a human teleoperator,
an evaluation dataset of rollouts from a policy ΠPI trained
on the PI data, and an evaluation dataset of rollouts from a
policy ΠTeleop trained on the teleoperation data.

For these four datasets, the data collection procedure is
illustrated in Fig. 2. First, the robot grasps the bottle from
the holder and moves it above the Kern scale (see Fig. 1d).
Then, an initial pressure Pinit is determined at random. Pinit
is to be reached before the agent attempts to maintain a
constant flow, such that the training dataset contains trials
with a variety of initial conditions (zero flow, drizzle, high
flow). For the PI training set and the evaluation sets of ΠPI
and ΠTeleop, Pinit is sampled from a uniform distribution with
a 5 kPa window around the pressure reading when the bottle
is not squeezed, Prest. With Pinit determined, the gripper starts
squeezing at 5 mm/s until Pinit is reached, at which point
the agent attempts to maintain a constant flow. The human
teleoperator, not having access to instrumentation data, was
tasked to start half of the trials from zero flow, half with a
flow larger than what they would eventually settle on. All
teleoperation trials are collected by the same person.

After initialisation, a 15 Hz control loop starts. Every
iteration, an observation is recorded, composed of an RGB
frame of the wrist camera, the internal pressure in the bottle,
the current gripper opening, the tactile forces, and the Gello
trigger position (teleoperation only). In addition, the weight
reading of the Kern scale is recorded at 3-4 Hz. The scale
reading is only used as an extra evaluation of the liquid flow



stability, its readout frequency is too low for use as the PI
controller’s process variable. Based on this observation, the
agent will compute the required gripper action. The agent
update method differs among the four agents (PI controller,
human teleoperator, ΠPI, ΠTeleop):
• PI: The relative gripper movement u[k] in mm at timestep
k is computed as:{

u[k] = Kpe[k] + I[k]

I[k] = αI[k − 1] + KiTse[k]
(1)

Kp and Ki are the proportional and integral gain respec-
tively. e[k] is the error on the process variable, which is
the pressure in the instrumented bottle. The setpoint is
1.2 kPa above Prest, which resulted in the lowest flow while
still maintaining a constant stream. Specifying the setpoint
with respect to Prest ensures that changes in air pressure
due to weather conditions have no effect. The sample time
Ts is the inverse of the control frequency (15 Hz), and α
is an exponential back-off factor to reduce the impact of
previous errors. The values used for these parameters are
included in Fig. 2.

• Teleop: The human operator looks at the bottle and at-
tempts to keep the stream constant, squeezing the Gello
trigger accordingly. The encoder in the Gello trigger
outputs an angle that is linearly mapped to the Schunk
opening width, such that a released trigger corresponds to
a loose grasp of the bottle, and a fully squeezed trigger cor-
responds to the minimum gripper opening Wmin of 2 cm.
The operator chose the smallest flow that still maintained
a constant stream, mimicking the chosen setpoint for the
PI controller.

• ΠPI & ΠTeleop: These are neural networks (NN), see
section II-D. An agent update constitutes a forward pass
of the NN.
A squeezing trial lasts until the maximum scale weight

Smax of 25 g or the minimum gripper opening Wmin has been
reached. The bottle is turned right side up to equalise the
air pressure inside. If the bottle is empty, it is placed down
to be manually refilled. If it is not yet empty, the robot
turns the bottle upside down again, and a new trial starts
immediately. Detecting whether the bottle is empty can be
done by comparing the pressure readings before and after
turning the bottle over: remaining liquid will add to the
pressure reading when the bottle is upside down. If both
readings are approximately equal, the bottle is empty.

For each of the training datasets collected with the PI and
Teleop agents, 42 trials were collected, which corresponds
to five full bottles squeezed until empty. For the evaluation
datasets, collected with the ΠPI and ΠTeleop agents, four full
bottles were squeezed until empty, resulting in 32 trials each.

D. Learning Architecture
ΠPI and ΠTeleop are Action Chunking Transformer (ACT)

models [2] with a ResNet18 vision backbone. They both
predict a relative gripper move, given an observation that
consists of a 340x480 wrist camera image and a 13-
dimensional state vector. The state vector is composed of

Fig. 2: Control flow diagram for data collection.

the current gripper opening and the 3D force readings of
the four taxels in the tactile fingertip. We set the chunk
size to 10, such that the model predicts a sequence of 10
actions, which corresponds to 0.6 seconds of wall-clock time
at 15 Hz. Training a model took about 1.5 h on an NVIDIA
RTX4080 GPU. Inference takes 12 ms on an NVIDIA 3090
GPU. Unlike the original ACT paper, we do not use temporal
ensembling nor do we execute multiple actions for each
chunk: we found that this highly dynamic task benefited
from frequent predictions, and only execute the first action
of every predicted chunk.

E. Evaluation

The measure of quality for a squeeze trial is the standard
deviation σ of the time series pressure reading as a proxy for
the flow rate. The first two seconds of a trial are discarded,
to exclude transient effects. We refer to σ as the “score”.

III. RESULTS & DISCUSSION

A. Task Characterisation

Fig. 3a shows a typical trial of the PI controller. This
trial started from a Pinit below the setpoint, so the gripper
quickly closes at the start, increasing the internal pressure.
The PI controller then maintains an approximately constant
pressure, with a σ of 26 Pa. The scale clearly shows that
the liquid flow is constant: the weight curve rises at 1.22 g/s
with a root mean square error (RMSE) of 0.07 g. It appears
that the PI controller settles on a linear squeeze of 0.6 mm/s.
This raises the question whether it is sufficient to squeeze
at a constant speed, rather than attempting to learn reactive
behaviour. Fig. 3b shows that reactive behaviour is necessary:
if the gripper squeezes at a constant linear speed of 0.6 mm/s



(a) The PI controller settles on a gripper speed of 0.6 mm/s.

(b) Forcing a gripper speed of 0.6 mm/s from the start results in
an internal pressure drift.

Fig. 3: A constant flow requires non-linear squeezing.

from the start, the internal pressure drifts. The RMSE of
a linear fit on the scale weight curve increases more than
tenfold, to 0.85 g. A similar result was obtained for speeds of
1.1 and 1.25 mm/s. The gripper opening in Fig. 3a resembles
the manually tuned finger motion used in [23].

B. Agent Comparison

For each collected trial, the standard deviation σ is com-
puted. The results are compiled in histograms with a bin
width of 25 Pa, see Fig. 4. The manual trials show a very
wide spread, some even reaching a σ of over 1000. This is
because some people naturally performed better than others,
but also because people tried different squeezing strategies,
some of which were ineffective. For clarity of the figure,
the final histogram bin aggregates all scores over 400. The
lowest σ achieved was 105, which serves as a reference point
to compare the performance of other agents. Notably, 40 %
of the teleoperation demonstrations score better than the best-
case manual performance. This is attributed to the Gello
trigger taking less force to squeeze than the bottle itself,
making it physically less demanding for the teleoperator.
On average, the teleoperated trials had a σ of 126±58 Pa.
We argue that our teleoperated demonstrations are “good”,
in the sense that they are comparable to best-case manual
performance. The PI training set scores by far the best, with
an average σ of 30±7 Pa.

The evaluation set of the ΠPI policy has a mean score
of 93±30 Pa, compared to 144±56 Pa for the ΠTeleop policy.
Assuming Gaussian priors, we can calculate the probability
that ΠPI performs better than ΠTeleop. Let XPI be the σ of a
random ΠPI trial and XTeleop of a ΠTeleop trial:{

XPI ∼ N(93, 30)
XTeleop ∼ N(144, 56)

⇒ XTeleop −XPI ∼ N(51, 64)

(2)

Fig. 4: Comparing agent scores.

P[ΠPI better than ΠTeleop] = P[XPI < XTeleop]

= P[XTeleop −XPI > 0]

(2)
= 78%

(3)

We conclude that, given the choice between ΠPI and ΠTeleop,
choosing ΠPI will lead to a better result in 78 % of cases.
This is an added benefit on top of the partial automation
of demonstrations for ΠPI, because of which data collection
required significantly less human effort. However, instrumen-
tation requires hardware design effort before data collection
can start. This raises important trade-offs: Is the performance
gain achieved by exploiting instrumentation worth the initial
design effort? Is data collection prohibitively time consuming
at scale, so that an initial investment in instrumentation can
save time overall? The answer to these questions may change
on a case-by-case basis, but we believe that, in the search
for generalist agents, instrumentation has a lot of unexplored
potential.

IV. CONCLUSION AND FUTURE WORK

We developed an instrumented squeeze bottle to aid in
learning the task of squeezing a constant flow from the bottle.
Five datasets were collected. It was found that manual human
performance varied wildly, and that human teleoperation can
be easier than manual operation if the required grasping
force to actuate the teleoperation mechanism is less than for
the bottle itself. Still, a PI controller exploiting the instru-
mentation data significantly outperformed the teleoperator. In
addition, like [9] and [10], we explicitly showed that better
demonstrations lead to a better policy: an ACT policy trained
on the automated PI demonstrations performs better than
an ACT policy trained on the teleoperated demonstrations
in 78 % of cases. Hence, instrumentation not only reduces
human effort during data collection, but can also improve
the performance of learned policies.

In future work, the generalisation capabilities of the poli-
cies should be evaluated. Our results are promising, but
for practical applications the true quality of our squeezing
policy should be measured on out-of-distribution bottles and
environments. In addition, we have shown just one possi-
ble approach for incorporating instrumentation in imitation
learning. Our aim is to develop similar case studies to build
an overview of the possible benefits of instrumentation for
robot learning.
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