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Abstract—Manipulating deformable linear objects (DLOs) is
challenging due to their complex dynamics and the need for safe
interaction in contact-rich environments. Most existing models
focus on shape prediction alone and fail to account for contact
and tension constraints, which can lead to damage to both the
DLO and the robot. In this work, we propose a certifiably safe
motion planning and control framework for DLO manipulation.
At the core of our method is a predictive model that jointly
estimates the DLO’s future shape and tension. These predictions
are integrated into a real-time trajectory optimizer based on
polynomial zonotopes, allowing us to enforce safety constraints
throughout the execution. We evaluate our framework on a
simulated wire harness assembly task using a 7-DOF robotic arm.
Compared to state-of-the-art methods, our approach achieves a
higher task success rate while avoiding all safety violations. The
results demonstrate that our method enables robust and safe
DLO manipulation in contact-rich environments.

I. INTRODUCTION

Effective manipulation of deformable linear objects
(DLOs)—such as cables, ropes, and wires—is essential for
a wide range of applications, including wire harness assem-
bly and surgical suturing [1]–[3]. Yet, DLO manipulation
remains a fundamental challenge in robotics due to their high-
dimensional configuration spaces and nonlinear, time-varying
dynamics [4]. Moreover, in real-world applications, contact
between the DLO and its environment is often inevitable and
sometimes even necessary [5]. Such interactions introduce
additional safety risks, including overextension and potential
damage to both the DLO and the robot [6]. These chal-
lenges underscore the need for a manipulation framework that
integrates high-fidelity modeling with planning and control
strategies equipped with safety guarantees.

Existing modeling approaches for DLOs primarily focus on
predicting shape deformations and can be broadly categorized
into physics-based and learning-based methods. Physics-based
models, such as mass-spring systems [7], position-based dy-
namics [8], and the finite element method [9], offer physical
interpretability but often suffer from a trade-off between high
computational cost and limited accuracy in dynamic scenarios.
Learning-based methods leverage deep neural networks to
predict DLO shapes and sometimes incorporate physics priors
to enhance consistency [10]–[13]. While these models have
achieved promising results in shape prediction, they face
two key limitations: they generalize poorly to environments
with frequent contact, and they cannot assess whether the
DLO will be overextended—an essential factor in ensuring
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Fig. 1. This paper introduces a certifiably safe framework for manipulating
DLOs in contact-rich environments. At the core of our method is a predictive
model that simultaneously estimates the future shape and tension of the DLO.
The figure illustrates a robot arm manipulating a DLO (white) toward a goal
configuration (green) in the presence of an obstacle (red). The manipulation
is executed without causing collisions or overstretching, despite contact with
the environment.

safe manipulation. Similar challenges have also been ob-
served in structured manipulation settings involving cluttered
scenes [14]. Furthermore, shape prediction alone is insuffi-
cient; accurate tension estimation is critical for preventing
failure and enabling reliable execution in safety-critical tasks.
In real-world manipulation scenarios, however, tension infor-
mation is rarely directly observable and is often difficult to
model due to frictional contact, geometric constraints, and
limited sensing [15]. These challenges make it difficult to
analytically infer internal tension from geometric information
alone. However, learning-based methods have been effectively
applied in related contexts to approximate unobservable phys-
ical quantities [16]–[18], suggesting their potential to address
this gap.

On the planning side, existing methods often rely on sim-
plifying assumptions that compromise safety. Sampling-based
approaches, such as probabilistic roadmaps (PRM) [19] and
rapidly-exploring random trees (RRT) [20], [21], as well as
learning-based methods using supervised [22] or reinforce-
ment learning [23], typically neglect contact-induced risks by
assuming no overextension and no collisions between the robot
and its environment. However, in real-world scenarios, a DLO
can become trapped or overstretched, generating unexpected
forces that alter the robot’s behavior and potentially lead
to unanticipated collisions. These safety hazards underscore
the need for a motion planning and control framework that
not only accounts for DLO deformation but also certifiably
enforces safety under physical constraints.
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Fig. 2. Overview of the proposed framework. Starting from an initial state, the robot generates a set of parameterized trajectories and uses a learned predictive
model to estimate the resulting DLO shape and tension. These predictions are incorporated into a reachable set computation, enabling the identification of
safe trajectories under contact-rich conditions. An optimization problem is then solved to select the best feasible trajectory, which is executed using a robust
controller. The loop runs in a receding horizon fashion until the DLO reaches the desired goal configuration without collisions or overstretching.

In this work, we propose a novel learning-based predictive
model that jointly forecasts the future shape and tension of
DLOs over extended time horizons. Building on this model,
we develop a certifiably safe motion planning and control
framework for DLO manipulation in complex, 3D contact-rich
environments. The framework explicitly enforces safety con-
straints on DLO tension and robot motion through an online
trajectory optimization process. This enables robust motion
execution without inducing excessive tension or collisions.
Experimental results in a simulated wire harness assembly task
demonstrate substantial improvements in accuracy, safety, and
robustness compared to existing baselines.

II. METHODS

This paper addresses the problem of safe motion planning
and control for DLO manipulation in contact-rich environ-
ments. We consider scenarios in which one end of the DLO
is held by the robot’s end-effector, while the other end is
either fixed to the environment or held stationary by another
robot. The objective is to develop a framework that leverages
predictions of DLO shape and tension to guide the robot
in manipulating the DLO from an initial configuration to a
desired one. The proposed approach aims to prevent both
manipulator collisions and DLO overextension. An overview
of the framework is shown in Fig. 2.

A. DLO Shape and Tension Prediction

In this subsection, we present our approach to jointly
predicting the shape and tension of a DLO during dynamic
manipulation. We begin by introducing a discretized represen-
tation of the DLO. We then leverage the structure of a long
short-term memory (LSTM) network to develop a model that
predicts future DLO shape and tension. The model requires
only the current DLO state and the planned future states of
the manipulator as inputs.

1) Discretized state representation: Fig. 3 illustrates the
discretized state representation for the DLO and shows the
local coordinates for each discretized node. We define the
state of the DLO at time t as x(t). We discretize the DLO
into N small links with N + 1 nodes so the state of entire
DLO can be represented by the state of each node: x(t) =
[x0(t),x1(t), ...,xN(t)]⊤. Each node’s state can be explicitly
denoted by its position in the world coordinates: xi(t) ∈ R3

for i = 0,1, ...,N. Therefore, the DLO’s state can be denoted

Fig. 3. a) is an overview of the discretized configuration of DLO. Blue circles
represent the discretized nodes of the DLO. b) shows the local coordinate of
each node. For the ith node, its local coordinate is denoted by (αi,βi,γi).

by: x ∈ RN+1. Neighbor DLO links are connected via two
revolute joints (β and γ directions in local coordinate).

2) Contact-aware modeling: Given the state of the whole
DLO at time 0: x0 = x(0), and the state of the end of DLO at
time t: x0(t), we build a model to jointly predict the state of
the whole DLO at time t:

x(t) = fNN, state(x0,x0(t)) (1)

and the tension at time t = T :

f (t) = fNN, tension(x0,x0(t)) (2)

The model architecture is illustrated in Fig. 4. It takes as
input the initial full state of the system, x(0), and the future
trajectory of the end-effector, x0(t). An LSTM layer encodes
temporal dynamics, while a contact handler explicitly accounts
for interactions with obstacles. During contact, some nodes in
the predicted DLO state may penetrate the obstacle model,
which can degrade prediction accuracy. To address this, the
contact handler solves a quadratic programming problem that
projects the penetrated nodes onto the obstacle surface. This
projection minimizes the displacement between each node’s
original predicted position and its adjusted contact-consistent
position. The model then outputs the predicted full state
trajectory x(t) and the corresponding tension profile f (t).

B. Robot Model

In the context of a serial robotic manipulator characterized
by a configuration space Q of dimension nq and a compact
time interval T ⊂ R, we define a trajectory for the configura-
tion denoted as q : T → Q ⊂Rnq . The velocity associated with
this configuration trajectory is represented by q̇ : T →Rnq . Our
assumption regarding the robot model is as follows:
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Fig. 4. Architecture of the DLO shape and tension prediction model.

Assumption 1. The robot is composed of revolute joints,
where the jth joint actuates the robot’s jth link. The robot
has encoders that allow it to measure its joint positions and
velocities. The robot is fully actuated, where the robot’s input
u : T → Rnq .

We further make the following assumption about the con-
nection between the robot and the DLO:

Assumption 2. The reaction force between the DLO and the
robot is treated as an external force applied to the robot’s
end-effector. Its magnitude is equal to the tension in the DLO.

The dynamics are represented by the standard manipulator
equations [24]:

M(q(t),∆)q̈(t)+C(q(t), q̇(t),∆)q̇(t)+G(q(t),∆)

= u(t)+ J⊤(q(t)) f (t)
(3)

where ∆ is the set of inertial parameters in the robot model,
M(q(t),∆) ∈ Rnq×nq is the positive definite inertia matrix,
C(q(t), q̇(t),∆) ∈ Rnq is the Coriolis matrix, G(q(t),∆) ∈ Rnq

is the gravity vector, u(t) ∈Rnq is the input torque all at time
t, J(q(t)) ∈ R3×nq is the manipulator Jacobian, and f (t) ∈ R3

is the reaction force.
To reason about collision avoidance, we define the robot’s

forward occupancy, which represents the space occupied by
each link given the current joint configuration. Let L j ⊂ R3

denote the volume of the jth link in its local frame. Its forward
occupancy at time t is: FO j(q(t)) = p j(q(t))⊕ R j(q(t))L j,
where p j(q(t)) and R j(q(t)) denote the position and orien-
tation of joint j. The total arm occupancy is:

FO(q(t)) =
nq⋃
j=1

FO j(q(t)). (4)

This is used to enforce collision-free motion in the planning
framework.

C. Online Trajectory Optimization

Our online trajectory optimization builds upon the AR-
MOUR framework [25], which employs reachability analysis
via polynomial zonotopes for safe motion planning under
dynamic uncertainty. ARMOUR considers uncertainty in the
robot’s inertial parameters and computes conservative reach-
able sets to ensure safety. We extend this approach by integrat-
ing predictions of DLO shape and tension into the optimization
problem.

1) Trajectory parameterization: We assume without loss of
generality that the control input and trajectory of a planning
iteration begin at time t = 0 and end at a fixed time tf.
We denote the time that the planning and control framework
identifies a new trajectory parameter as tp. In each planning
iteration, the framework chooses a desired trajectory to be
followed by the arm. These trajectories are chosen from a
continuum of trajectories, which each uniquely determinated
by a trajectory parameter k ∈K and are written as qd(t;k). The
set K ⊂Rnk , nk ∈N, is compact and represents a user-designed
continuum of trajectories. In general, K can be designed to
include trajectories designed for a wide variety of tasks and
robot morphologies [25]–[27]. We assume that q̈d( · ;k) is a
Lipschitz continuously differentiable function and q̇d(tf;k) =
q̈d(tf;k) = 0. Finally, we define the desired configuration of the
DLO in each planning iteration as xd = (x0,d ,x1,d , ...,xN,d)

⊤.
2) Polynomial zonotope overapproximation: The proposed

framework leverages polynomial zonotopes to overapproxi-
mate parameterized trajectories and rigorously characterize the
reachable sets of key variables during planning. Polynomial
zonotopes offer a compact yet expressive representation of
uncertainty over time and parameter space, making them well-
suited for real-time robust trajectory optimization. This repre-
sentation enables the propagation of uncertainty in both time
t and trajectory parameters k through the system dynamics.
Using the techniques from [25], we compute overapproxima-
tions of the robot’s joint state, velocity, control input, forward
occupancy, and the DLO tension.

3) Cost function: We propose a novel cost function that
incorporates the DLO’s configuration, in contrast to conven-
tional approaches that rely solely on the robot’s configuration.
In each planning iteration, we choose a timestep ∆t and divide
the compact time horizon T into nt =

T
∆t time subintervals.

Then we define nt +1 time stamps: t0, t1, ..., tnt , where t0 = 0,
tnt = tp, and ti− ti−1 = ∆t holds true for every i ∈ {1,2, ...,nt}.
We define the accumulated distance between the wire-harness’
state in the trajectory and the desired goal state as the cost
function of the trajectory optimization problem:

cost(k) =
np

∑
i=1

∥x(ti)−xd∥

=
np

∑
i=1

∥∥ fNN, state(x0,x0(ti))−xd
∥∥

=
np

∑
i=1

∥∥ fNN, state(x0, fFK(q(ti;k)))−xd
∥∥

(5)

where np ∈ {0,1,2, ...,nt}, tnt = T , and fFK(·) is the function
that calls the forward kinematics to compute the position of
the robot’s end-effector.

4) Safety constraints: We now describe the set of con-
straints that ensure the safety of any feasible trajectory, in-
cluding a newly introduced constraint to prevent overstretching
of the DLO. The trajectory must satisfy the robot’s joint
position, velocity, and actuation limits at all times. These
constraints must hold for each joint throughout the entire
planning horizon. Additionally, the robot must avoid collisions
with any obstacles in the environment. To prevent the DLO
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from being overstretched, we define a maximum allowable
tension threshold, denoted as flim.

Assumption 3. Since the true DLO tension is predicted by a
learned model, we account for potential prediction errors by
introducing a certified error bound ε , such that:

∥ ftrue(ti;k)− f (ti;k)∥ ≤ ε, ∀ti,k.

Here, ftrue(ti;k) denotes the true DLO tension at time ti
under a trajectory parameterized by k, and f (ti;k) denotes
the corresponding predicted tension from the learned model
fNN,tension.

Under this assumption, we impose the following certifiably
safe constraint:

∥ f (ti;k)∥+ ε ≤ flim, ∀i ∈ Nt . (6)

This ensures that even in the worst case, where the model
underestimates the true tension by up to ε , the actual tension
will not exceed the safety limit. In our implementation, ε is
estimated from the maximum residual observed on the test set.

5) Online optimization problem: Given the trajectory pa-
rameterization, polynomial zonotope overapproximation, cost
function, and safety constraints defined above, the robot’s
trajectory for manipulating the DLO can be computed by
solving the following optimization problem:

min
k∈K

cost(k) (7)

qj(Ti;k)⊆ [q−j,lim,q
+
j,lim] ∀i ∈ Nt , j ∈ Nq (8)

q̇j(Ti;k)⊆ [q̇−j,lim, q̇
+
j,lim] ∀i ∈ Nt , j ∈ Nq (9)

u(qA(Ti;k), f(Ti;k))⊆ [u−j,lim,u
+
j,lim] ∀i ∈ Nt , j ∈ Nq (10)

FOj(q(Ti;k))
⋂

O = /0 ∀i ∈ Nt , j ∈ Nq (11)

∥f(Ti;k)∥+ ε ≤ flim ∀i ∈ Nt . (12)

D. Robust Controller

The proposed framework adopts a robust, passivity-based
controller to track the specified trajectories. This controller
builds on a variant of the Recursive Newton-Euler Algorithm
(RNEA) introduced in [25]. It conservatively accounts for
uncertainties in the manipulator’s dynamics due to uncertain
inertial parameters and provides an upper bound on the worst-
case tracking error. Notably, our controller also incorporates
the external force exerted by the DLO, a novel consideration
not addressed in prior work.

III. EXPERIMENTS

We evaluate the proposed method in a simulated warehouse
environment. The experimental task involves using a Kinova
Gen3 7-DOF robotic arm to assemble a wire harness onto an
automotive engine.

A. Experiment Setup

1) Experimental environment: We construct the simulation
environment using PyBullet. The engine is modeled as a static
cuboid obstacle placed on a flat surface. Its pose is defined
by (xObs,yObs,θObs), where xObs and yObs specify the engine’s

TABLE I
Results from 100 simulation trials.

Method
Goal

Reached
Failed

w/o Violation
Robot

Collision
DLO

Overextension
Learning Where to Trust 38 30 29 3

ARMOUR 54 20 0 26
Ours 76 24 0 0

center coordinates in the global frame, and θObs denotes
its orientation around the global Z-axis. The wire harness
measures 1.20 m in length and weighs 120 g. The engine
dimensions are 0.30 m (length), 0.50 m (width), and 0.50 m
(height).

2) Task description: The task requires the robot to manip-
ulate the wire harness safely along a planned trajectory from
an initial state to a goal state. Initially, the wire harness is
held in free space without contacting the engine. In the goal
state, the middle section of the wire harness must be placed
securely onto the engine. The simulation experiment consists
of 100 randomized trials. In each trial, the engine is placed at
a random location and orientation within the environment to
evaluate the robustness of the proposed method under varying
spatial configurations.

3) Prediction model training process: To train the predic-
tion model, we generate 2,000 simulated trajectories. In each,
the robot holds one end of the wire harness and executes
a random action while the other end remains fixed. The
robot and wire harness begin from randomized configurations
with zero initial velocity and acceleration. Each trajectory
spans 2 seconds, producing 4,000 seconds (approximately 66.7
minutes) of simulation data. We record the wire harness’s
shape and tension throughout each trajectory.

The dataset is split into 1,500 trajectories for training, 300
for validation, and 200 for testing. The prediction model is
trained using an L1 loss function and optimized with Adam
at a learning rate of 1×10−4. Early stopping is applied based
on validation loss to avoid overfitting.

B. Baselines

We compare our method against two baselines. The first
is Learning Where to Trust [22], which uses a classifier to
identify robot motions that might lead to trapping. However,
it lacks certifiable safety guarantees for both the robot and the
DLO. The second is ARMOUR [25], a certifiably safe planner
that ensures robot safety but does not account for DLO-specific
risks such as overstretching.

C. Results

The outcomes of 100 randomized trials are summarized in
Tab. I. Each trial is categorized into one of four outcomes:
Goal Reached—the task is successfully completed within
20 motion steps; Failed without Violation—the task is not
completed within the limit, but no safety constraint is vio-
lated; Robot Collision—the robot collides with the engine;
DLO Overextension—the wire harness exceeds its allowable
tension threshold.

Comparing ARMOUR with our proposed method high-
lights the importance of explicitly predicting DLO tension
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and incorporating it into the safety constraints during motion
planning. While ARMOUR ensures robot safety, it lacks
protection for the DLO, leading to 26 cases of overextension.
In contrast, our method achieves both robot and DLO safety,
with zero constraint violations. Although Learning Where to
Trust shows fewer DLO overextensions than ARMOUR, it is
overly conservative, successfully completing the task in only
38 out of 100 trials. This is largely due to its reliance on
a binary classification model that labels motions involving
DLO-environment contact as “risky.” However, such contact
is often necessary to complete the task. The model’s inability
to distinguish between harmful and acceptable contact leads
to frequent conservative stops and task failures. Our method,
by predicting the tension of the DLO in contact-rich environ-
ments, enables safer and more effective manipulation. It allows
necessary interactions with the environment while preserving
safety for both the robot and the DLO.

IV. CONCLUSION

We presented a certifiably safe framework for manipulating
DLOs in contact-rich environments. At its core is a predictive
model that jointly estimates the shape and tension of the
DLO, which is integrated into a trajectory optimization-based
planner to enforce safety constraints on both the robot and
the DLO during execution. Our method accommodates phys-
ical interactions with the environment without compromising
safety. In a simulated wire harness assembly task, it achieved
a 76% success rate with no collisions or overextensions, out-
performing prior methods that were either overly conservative
or lacked DLO-specific safeguards. Future work will focus
on closing the sim-to-real gap by validating the framework
on physical hardware, improving contact modeling for more
accurate tension prediction, and extending the approach to
more complex tasks, such as multi-arm coordination or human-
robot collaboration.
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