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Fig. 1: Tool-as-Interface. We propose a scalable data collection and policy learning framework designed to transfer diverse, intuitive, and
natural human play into effective visuomotor policies. The framework enables robots to learn robust policies that can operate effectively
under challenging conditions, such as base and camera movement, and achieve high performance on a variety of complex manipulation tasks.

Abstract—Tool use is essential for enabling robots to perform
complex real-world tasks, but learning such skills requires
extensive datasets. While teleoperation is widely used, it is slow,
delay-sensitive, and poorly suited for dynamic tasks. In contrast,
human videos provide a natural way for data collection without
specialized hardware, though they pose challenges on robot
learning due to viewpoint variations and embodiment gaps. To
address these challenges, we propose a framework that transfers
tool-use knowledge from humans to robots. To improve the
policy’s robustness to viewpoint variations, we use two RGB
cameras to reconstruct 3D scenes and apply Gaussian splatting
for novel view synthesis. We reduce the embodiment gap using
segmented observations and tool-centric, task-space actions to
achieve embodiment-invariant visuomotor policy learning. Our
method achieves a 71% improvement in task success and a
77% reduction in data collection time compared to diffusion
policies trained on teleoperation with equivalent time budgets.
Our method also reduces data collection time by 41% compared
with the state-of-the-art data collection interface.

I. INTRODUCTION

Tool use enables humans to perform complex tasks by
extending their physical capabilities. In contrast, robotic sys-
tems remain largely limited to grasping and pick-and-place
operations [24, 18, 3, 20, 5, 16, 15]. To enable richer manipu-
lation skills, robots must learn to use diverse tools in dynamic
environments. This work focuses on the efficient training of
robot policies for tool use, with an emphasis on scalable and
low-cost data collection.

Imitation learning (IL) provides a promising approach for
acquiring tool-use skills directly from human demonstra-
tions [10, 11, 12]. Prior work has leveraged teleoperation

platforms [25, 4, 12] and hand-held grippers [22, 8] to provide
precise supervision. However, these systems often require
expensive hardware, 3D-printed tools, or expert calibration,
limiting their use beyond controlled environments. Although
effective, these methods are difficult to scale.

Natural human manipulation videos—capturing everyday
tool use without specialized equipment—offer a scalable and
intuitive alternative for data collection. These demonstrations
require no robotic infrastructure or technical preparation, yet
remain underutilized in IL due to embodiment mismatch and
the different perspective of single-view recordings [23, 2, 19].
We introduce a new framework that leverages two-view human
manipulation videos to train robot policies. Using 3D scene
reconstruction and novel view synthesis, the framework en-
ables viewpoint-invariant learning. Embodiment-specific cues
are filtered using segmentation, and a task-space, tool-centric
action representation supports robustness to robot base varia-
tion (Figure 1).

Our contributions are as follows: (1) we introduce a frame-
work for scalable, intuitive, and cost-effective data collection
for robot tool-use learning, using two-view human manipu-
lation videos without requiring teleoperation or specialized
hardware; (2) we demonstrate strong generalization across
diverse real-world tool-use tasks (e.g., nail hammering, meat-
ball scooping, pan flipping, wine bottle balancing, and soccer
ball kicking) achieving a 71% higher success rate and 77%
reduction in data collection time compared to diffusion poli-
cies trained on SpaceMouse [9] or Gello [27], and a 41%
improvement over handheld grippers like UMI [8]; and (3) we
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Fig. 2: Policy Design. Human manipulation data was collected using two cameras and processed through the foundation model MASt3R [14] to generate 3D reconstructions.
Using 3D Gaussian splatting, we sampled novel views to augment the dataset. Human hands were segmented to create embodiment-agnostic observations as policy inputs. For
action labeling, FoundationPose [26] estimated the tool’s pose in the camera frame, T camera

tool , which was transformed into task space, T task
tool . A diffusion model was then trained as

the visuomotor policy.

provide a detailed robustness analysis, evaluating performance
under changes in viewpoint, robot base configuration, and
human motion, along with ablations on segmentation, novel
view synthesis, and random cropping.

II. TOOL-AS-INTERFACE FRAMEWORK

Problem Statement: We formulate robotic manipulation
as a Markov Decision Process (MDP), where the goal
is to learn a policy π : Or → A that enables a robot
to perform a given task. The robot’s observation space
Or consists of a single-view RGB image Ir ∈ Ir and
proprioceptive data xr ∈ SE(3), where each Ir is a tensor
in R128×128×3. We train the policy using an imitation dataset
of N human demonstrations, D = (Oh

0 ,Oh
1 , . . . )

N

n=1, where
each Oh = {Ihv1, Ihv2} contains two RGB images captured
from different viewpoints and each Ihvi ∈ Ih is a tensor
in R480×640×3. We preprocess the dataset to infer actions
using a 6D pose estimation and tracking model, resulting
in D = {(Oh

0 , a0,Oh
1 , a1, . . . )}Nn=1, where each action

a ∈ SE(3). To bridge the embodiment gap between humans
and robots, we assume the tool is rigidly attached to both the
human hand (implicitly) and the robot end-effector (explicitly),
with a fixed transformation estimated prior to deployment.
Under this setup, the robot can reproduce human-demonstrated
tool trajectories, enabling policy transfer across embodiments
while preserving task-relevant behaviors (Figure 2).
Tool-Centric Demonstrations for Robot Manipulation: We
leverage the fact that both humans and robots can operate the
same physical tools to facilitate policy learning. Tools serve
as a shared interface for interacting with objects, enabling
the direct transfer of human demonstrations with minimal
embodiment-specific adaptation. Unlike prior work focused
on grasping or pick-and-place tasks [8, 22, 29], our approach
enables robots to perform complex interactions using everyday
tools. Our formulation abstracts actions to the tool pose, reduc-
ing morphological dependence and promoting policy general-
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Fig. 3: Coordinate System Diagram. The diagram shows the Camera, Tool, Task
space, End-Effector (EEF), and Base frames. The action is represented as T task

tool .

ization across embodiments. It also simplifies data collection
by eliminating the need for robot-specific demonstrations.
Humans can naturally manipulate tools by hand without extra
instrumentation. For deployment, robots either rigidly grasp
the tool, as demonstrated with a Kinova Gen3 arm, or attach
it using a custom fast tool changer described in Appendix B2
and shown in Figure 6, compatible with ISO 9409-1-50-4-M6
flanges.
Perception Alignment Across Embodiments: To enable
cross-embodiment policy transfer, we align human and robot
observations within a shared visual space Is by applying a
feature extraction function g : Ih ∪ Ir → Is. We instantiate
g with Grounded-SAM [21], using prompts such as “human
hand” and “robot arm” to mask out embodiment-specific
regions—human hands during training and robotic arms during
deployment. Masking out these regions ensures that only task-
relevant visual information (e.g., tools and objects) remains
visible in both phases. By minimizing visual discrepancies
between human and robot data, the feature extraction process
reduces embodiment-specific bias and improves generalization
across embodiments.
3D-Aware View Augmentation: We use cameras for data
collection due to their widespread availability—over 7.14
billion smartphones are equipped with them [13]. However,



single-camera setups suffer from scale ambiguity and limited
3D perception and are sensitive to viewpoint changes.
3D RECONSTRUCTION: To address this, we use MASt3R [14],
an image-matching model that reconstructs accurate 3D envi-
ronments from just two RGB images—eliminating the need
for depth sensors, which are less common and more power-
hungry. Two cameras suffice to avoid scale ambiguity inherent
in monocular settings. MASt3R produces high-quality point
clouds without requiring known camera extrinsics or intrinsics
by globally aligning multi-view features.
VIEW SYNTHESIS AND AUGMENTATION: 3D Gaussian splat-
ting synthesizes novel viewpoints from the reconstructed
scene, allowing the robot to observe interactions from multiple
angles—even when only two views are available. The result-
ing perspectives augment the training data, increasing visual
diversity and improving policy learning. To further enhance
robustness and generalization, random cropping is applied,
following diffusion policy [6, 7].
Tool-Centric Action Representation and Policy Deploy-
ment: To support general tool usage, we propose a task-
frame, tool-centric action representation denoted as T task

tool ,
which describes the tool’s motion independently of human
or robot morphology, camera pose, or base configuration.
This invariant formulation enables robust policy transfer across
different embodiments and viewpoints. As shown in Figure 3,
the tool’s pose is first estimated in the camera frame using
a 6D pose estimation model (e.g., FoundationPose [26]) as
T camera

tool , and then transformed into the task frame:

T task
tool = T task

cameraT
camera
tool ,

where T task
camera denotes the transformation from the camera to

the task frame.
A diffusion policy [6] maps a single-view RGB image

to a predicted SE(3) action T task
tool . At deployment, the robot

command is computed by converting the prediction to the end-
effector frame. For stationary robots, the task frame aligns
with the base frame; for mobile platforms, base movement is
compensated using T base

task . The resulting end-effector pose is
given by:

T base
eef = T base

task T
task
tool T

tool
eef ,

where T tool
eef is the known fixed transform between the tool and

the robot end-effector.

III. POLICY EVALUATIONS

Our evaluations aim to assess our framework across three
dimensions: reliability (how consistently and successfully the
learned policies perform), execution efficiency (how smooth
and natural the resulting behaviors are), and versatility (how
well the framework adapts to diverse tasks and generalizes
across conditions).
Experimental Tasks Overview: We evaluate five real-world
robotic tasks on Kinova Gen3 and UR5e robots, involving
precision manipulation, dynamic object handling, and dexter-
ous tool use. Policies use RGB inputs from RealSense D415
cameras and handle variations in object positions and camera

TABLE I: Task Success Rates and Completion Times. Success
rates are the number of successful trials out of total episodes,
and average completion times are based on successful trials. “DP”
refers to the diffusion policy trained on teleoperation data. “Not
Feasible” tasks denote cases where teleoperation failed due to extreme
dynamics, precision, or reactivity demands. Our method consistently
achieves higher success rates and shorter completion times.

Task Method Success Rate Time (s)

Hammer Nailing DP 0/13 -
Ours 13/13 11.0

Meatball Scooping DP 5/12 42.0
Ours 10/12 12.4

Pan Flipping - Egg DP Not Feasible -
Ours 12/12 1.5

Pan Flipping - Burger Bun DP Not Feasible -
Ours 9/12 1.9

Pan Flipping - Meat Patty DP Not Feasible -
Ours 10/12 2.3

Wine Balancing DP Not Feasible -
Ours 8/10 30.9

Soccer Ball Kicking DP Not Feasible -
Ours 6/10 2.0

poses. Tasks include: (1) Nail Hammering – Precise striking
of a small target, (2) Meatball Scooping – Contact-sensitive
rolling object manipulation, (3) Pan Flipping – Fast, dynamic
flipping with varied objects, (4) Wine Balancing – Gravity-
aware placement into an unstable rack, and (5) Soccer Ball
Kicking – Dynamic interception and obstacle avoidance. Full
details in Appendix B1.

Baselines: We evaluate the effectiveness and efficiency of
learning directly from human manipulation videos without
relying on robot-generated data. We benchmark against a dif-
fusion policy trained on robot demonstrations and UMI [8], a
hand-held gripper method. Robot demonstrations are collected
using SpaceMouse or Gello [27] under identical time budgets.
Additionally, we conduct ablations to assess random cropping
before policy training, novel view synthesis data augmenta-
tion, and embodiment segmentation. To further illustrate the
advantages of our approach, we compare trajectory rollouts for
a meatball-scooping episode, highlighting how our method is
more sample-efficient and less prone to distribution shifts by
eliminating excessive waypoints.

Evaluation Metrics: During testing, we introduce two types
of variations: (1) randomizing the initial spatial configurations
of objects in each task to assess policy generalization, and (2)
varying camera positions to evaluate the robustness of policies
to different viewpoints. All methods, including the baseline
and ablation variants, are tested under the same conditions.
Performance is evaluated using two metrics: success rate,
which measures the proportion of successfully completed task
trials and reflects policy effectiveness, and task completion
time, which captures the average duration to complete tasks
and reflects policy efficiency.



TABLE II: Task success rates comparing our method with the
hand-held gripper-based method on Nail Hammering.

Method Demo Duration & Count Success Rate

UMI [8] ∼180 seconds (25 demos) 0/13
UMI ∼720 seconds (100 demos) 13/13
Ours ∼180 seconds (40 demos) 13/13

IV. EXPERIMENT RESULTS

Capabilities and Effectiveness: Table I summarizes our
real-world results, showing that our framework consistently
achieves higher success rates across all tasks compared to
baselines. We also compare against the stronger hand-held
gripper baseline UMI [8] (Table II). In our default setup,
SLAM-based mapping failed due to low environmental tex-
ture, so we added a textured background to support reliable
mapping for UMI. For the nail hammering task, we evaluated
UMI with 25 demonstrations (matching our collection time)
and 100 demonstrations (to assess ideal performance). UMI
fails all 13 trials with 25 demonstrations but succeeded with
100. It was also inapplicable to wine balancing and pan
flipping due to contact and inertial challenges, and struggled
in soccer kicking due to localization failures. In contrast, our
method demonstrates reliable performance across all tasks:
accurately detecting spatial locations (nail hammering, meat-
ball scooping), performing high-speed motions (pan flipping),
precisely inserting wine bottles, and swiftly reacting in soccer
kicking. This strong performance is enabled by collecting
significantly larger and more diverse episodes within the same
data collection timeframe, enabling robust policy training.
Our approach overcomes limitations of teleoperation tools like
Gello and SpaceMouse, enabling data collection for scenarios
they struggle to handle. Qualitative policy rollouts are shown
in Figure 5 in Appendix.
Generalization:
Spatial Generalization: We evaluated spatial generalization
by varying initial conditions across tasks: nail positions for
hammering, meatball locations for scooping, goalkeeper setups
for soccer ball kicking, and object poses across the pan for
flipping (illustrated in Figure 7 in Appendix).
Object Generalization: Our method generalizes effectively to
different objects in the pan-flipping task, including the egg
and burger bun seen during training, and a 3D-printed meat
patty (illustrated in Figure 7, second column, in Appendix).
The policy learns to tilt the pan to slide the object into a
corner, then flick it to achieve a successful flip, enabling robust
generalization across object types.
Tool Generalization: We evaluated tool generalization by test-
ing the policy with five different pans: large, medium, small,
tiny, and square. The policy was trained using demonstrations
with the large, medium, and square pans and evaluated on all
five, with 12 trials per pan under varying initial configurations
(illustrated in Figure 4 in Appendix). It achieved high success
rates on the trained pans (large and medium). Performance
declined on smaller pans due to limited surface area, and on
the square pan due to shallow edges causing the bun to slide
out during flipping.
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Fig. 4: Tool Generalization. (a) The tested pans. (b) Success rate across 12 testing
trials.

Robustness:
Camera Pose Robustness: We evaluated the policy’s ability to
handle camera pose variations by introducing camera shaking
in three tasks: meatball scooping, nail hammering, and pan
flipping (Figure 12(a)). The first row shows the camera view,
and the second shows the scene overview and shaking motion.
Despite disturbances, the policy consistently completed all
tasks, enabled by random cropping during training, improving
adaptation to partial views and minor visual changes.
Robot Base Robustness: To assess robustness to base move-
ment, we manually shook the robot base during execution
(Figure 12(b)). When the shaking frequency exceeded the
control frequency, the end effector oscillated with the base;
however, the task-space action design enabled compensation
and successful task completion. As shown in Figure 12(d),
the policy also maintained effectiveness under simultaneous
camera and base shaking.
Chicken Head Stabilization: At lower shaking frequencies,
where the perturbation was slower than the robot’s control
loop, the end effector exhibited a stabilization behavior similar
to a chicken’s head [28] (Figure 12(c)), maintaining steady
control during mild base movements.
Human Perturbation Robustness: We evaluated resilience to
human interventions (Figure 10). The robot tracked moving
nails, adapted to new meatballs thrown in mid-task, and re-
flipped repositioned eggs, demonstrating robustness to real-
time disturbances.

V. CONCLUSION

In this work, we presented a framework for human-to-robot
imitation learning that leverages human manipulation video to
bridge the embodiment gap and enable robust policy training
for diverse tool-use tasks. Unlike traditional data collection
methods, which are often costly and hardware-dependent,
our approach democratizes data collection by eliminating the
need for specialized equipment or technical expertise, making
large-scale robot learning more accessible and scalable. We
validated the framework across challenging tasks, including
nail hammering, meatball scooping, pan flipping, wine bottle
balancing, and soccer ball kicking, demonstrating superior
performance, robustness to variations in camera poses and
base movements, and adaptability across 6-DOF and 7-DOF
robots. By improving accessibility, scalability, and reliability,
our work lays a strong foundation for advancing robotic
manipulation in complex, real-world scenarios.
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A. Design Choice

1) Key Capabilities and Practical Benefits: Our framework
enables the direct transfer of human manipulation data into
deployable robot policies. It is designed to fulfill the following
key objectives:

• Support for Dynamic and High-Precision Tasks: Hu-
man manipulation, with its inherent fluidity, enables the
execution of highly dynamic tasks. Examples include
flipping an egg in a pan or performing other actions that
require swift, accurate, and natural motions — challenges
that are often difficult to address with traditional teleop-
eration systems or handheld grippers.

• Robustness: The framework ensures robust performance
under dynamic conditions, enabling reliable task execu-
tion even with moving or shaking cameras. While broader
deployment on mobile platforms such as quadrupeds or
humanoids remains an open challenge, our design and
experimental results suggest strong potential for general-
ization to dynamic environments.

• Generalization Across Robotic Embodiments and Ob-
ject Categories: The framework demonstrates broad
generalizability, validated on robotic platforms such as
the UR5e and Kinova Gen3. It extends its capabilities to
manipulate a wide range of object categories, showcasing
its adaptability to various tasks, setups, and environments.

• Affordability and Accessibility: The framework requires
only two monocular RGB cameras, such as smartphones,
webcams, or RealSense cameras. With approximately
7.14 billion smartphones worldwide — covering around
90% of the global population — this setup is accessible to
almost anyone [13]. By relying solely on RGB cameras,
the framework eliminates the need for designing, printing,
or manufacturing additional hardware during the data col-
lection, ensuring a cost-effective and inclusive solution.

• Intuitive and Natural Interaction: Users can interact
naturally, without the need for specialized equipment or
additional tools. Using their bare hands and common
tools, participants can intuitively perform a variety of
tasks. Our approach removes technical barriers associated
with 3D printing and other hardware setups, fostering a
seamless, user-friendly experience for data collection.

B. Detailed Experiment Setup

1) Task Descriptions: Nail Hammering: The task involves
hammering a 3D-printed nail, requiring the robot to locate
the nail, draw back the hammer, and strike the nail tip
accurately. With a diameter of less than 15.5 mm, the nail
tip demands high precision. Challenges include localizing the
nail tip precisely and planning effective hammer trajectories.
To evaluate generalization, the initial position of the nail is
varied across different spatial configurations. We collected 180
seconds of data (40 episodes) from a single participant.
Meatball Scooping: In this task, the robot must use a spoon to
scoop a meatball from a pan and transfer it to a bowl. This task
is challenging due to the complex dynamics of the meatball,



Task 2: Meatball Scooping

Init Position meatball Scoop meatball SucceededTransfer meatball

Task 1: Nail Hammering

Init Draw back hammer Swing forward Strike nail

Task 3: Pan Flipping (Egg, Meat Patty, or Burger Bun)

Init Tilt pan Flick quickly Succeeded

Task 4: Wine Balancing

Init Hook bottle bottom Lift wine bottle SucceededInsert wine bottle

Catch egg

Task 5: Soccer Ball Kicking

Init Ball slid into the field Strike ball Score goal

Fig. 5: Policy Rollouts. We evaluate diverse real-world tasks: nail hammering (precision in locating a nail tip), meatball scooping (slippery object, constrained environments),
pan flipping (extremely dynamic, high-speed, contact-rich), wine balancing (precise control of unstable objects), and soccer ball kicking (dynamic object handling, goal-directed
actions).

which can roll unpredictably within the pan. Additionally, the
interaction between the spoon and the meatball requires careful
control, as improper contact can cause the meatball to slip or
escape the spoon. We randomize the initial position of the
meatball within the pan to test its generalization capability.
We collected 340 seconds of data (50 episodes) from a single
participant.

Pan Flipping (Egg, Burger Bun, Meat Patty): The objective
of this task is to use a pan to flip various objects, such
as an egg, a burger bun, and a meat patty. The task is
challenging due to its high-speed dynamics, requiring the robot
to overcome gravity and accurately manage the interaction
between the pan and the objects. Each object differs in
weight, shape, and texture, adding further complexity. This
task evaluates the policy’s ability to handle fast, contact-rich
interactions and adapt to diverse object types. To increase
variability, the initial positions of the objects within the pan are
randomized. Furthermore, the rapid and dynamic nature of the
task makes it unsuitable for classical demonstration collection
methods, highlighting the advantages of using bare-handed
human videos for data collection. We collected 50 seconds

of data (38 episodes) from a single participant using three
different pans and two object types.

Wine Balancing: In this task, the robot needs to use a hook to
lift a wine bottle and carefully insert it into an unstable, zero-
gravity wine rack. The task is challenging due to the precise
control required to suspend the bottle in mid-air and counteract
gravitational forces effectively. Any over-insertion or under-
insertion will cause the bottle to lose balance. To constrain
the horizontal movement of the rack, screws were added as
obstacles to limit lateral motion. No additional variability was
introduced. We collected 223 seconds of data (15 episodes)
from a single participant.

Soccer Ball Kicking: In this task, the robot must use a golf
club to kick a ball that slides into a field and direct it into the
goal. To increase the challenge, a 3D-printed row of players
serves as obstacles between the robot and the goal. The task
is difficult because the robot must accurately intercept the
moving ball, strike it with the correct force and direction,
and ensure it avoids obstacles before reaching the goal. The
position of the player obstacle varies. We collected 78 seconds
of data (20 episodes) from a single participant.



TABLE III: Benchmark Attributes of Real-World Tasks. These benchmarks evaluate the precision, adaptability, and capability of our
framework to address tasks requiring high precision, handling extreme dynamics, utilizing extrinsic dexterity, performing in contact-rich
scenarios, and overcoming gravity.

Benchmark High-Precision Extreme Dynamics Using Extrinsic Dexterity Contact-Rich Overcoming Gravity

Task 1: Nail Hammering "

Task 2: Meatball Scooping " " "

Task 3: Pan Flipping (Egg, Bun, Patty) " " " "

Task 4: Wine Balancing " " " "

Task 5: Soccer Ball Kicking "

Fig. 6: Fast Tool Changer. Two designs are shown: the left accommodates general
tools with a screw mechanism, and the right clips onto tools with specific mounting
shapes.

Fig. 7: Initial States for All Evaluation Episodes. All methods are evaluated using
the same set of manually defined initial states, overlaid in the image. These states ensure
diverse variations to test the policy’s spatial generalization capabilities.

2) Implementation Details: Hardware Design We de-
signed two fast tool changers compatible with robots using the
ISO 9409-1-50-4-M6 flange, as shown in Figure 6. The left
design utilizes a screw mechanism to accommodate general
tools, while the right design employs clips for tools with
specific mounting shapes.
Tool Pose Estimation We use Polycam to scan the tool and
obtain its mesh. The mesh is later feed into Foundation-
Pose [26] for 6D pose estimation.

C. Additional Experimental Results

Policy Execution Trajectory Comparison: Our framework
produces faster, smoother, and more natural trajectories com-
pared to traditional approaches, as shown by the end-effector

(a) Initial Setup (b) EEF Trajectory Comparison

Catch

Ball

X
Miss

Fig. 8: Policy Execution Trajectory Comparison. (a) Initial setup for meatball
scooping. (b) Comparison of end-effector XY trajectories from our framework and a
policy trained on robot-collected data.
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(b) Quantitative Results

Hook hits table
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Fig. 9: Effects of Embodiment Segmentation. (a) Failure cases without segmentation:
In the wine balancing task, the robot strikes the table, triggering safety stops. In the
soccer ball kicking task, it performs shorter, less precise actions. (b) Quantitative results:
Segmentation improved success rates in wine balancing (8 vs. 0) and soccer ball kicking
(6 vs. 2) by reducing the visual gap between training and deployment.

(EEF) XY trajectory for the meatball scooping task in Fig-
ure 8. Figure 8(a) shows the task setup, and Figure 8(b)
compares our policy rollout with a baseline trained on robot-
collected data. Our trajectory is significantly smoother, with
10× fewer waypoints, resulting in more fluid execution,
reduced cumulative errors, and improved sample efficiency,
thereby mitigating the distribution shifts commonly observed
in behavior cloning. In contrast, the baseline exhibits excessive
waypoints and discontinuous motions that hinder precise task
execution.
Effects of Embodiment Segmentation: Embodiment Seg-
mentation masks the agent’s embodiments during data col-



(a) Nail Tracking

(b) Multiple Meatball Scooping

(c) Adaptive Egg Flipping

Human tosses another meatball Human throws a third meatball

Human moves nail; robot adjusts Nail repositioned

Human flips egg back

Fig. 10: Human Perturbation Robustness. The robot handles human-induced perturbations across three tasks: (1) In nail hammering, it tracked a manually moved nail; (2) In
meatball scooping, it located and scooped new meatballs thrown mid-task; and (3) In egg flipping, it recovered the egg after human repositioning.

: Data Collection Camera

: Evaluation Camera

: Succeeded

: Failed
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: Failed

(a) Camera Poses (b) Ours w/ RC, w/ VA (c) Ours w/ RC, w/o VA (d) Ours w/o RC, w/o VA

Fig. 11: Policy Testing Across Camera Poses in Nail Hammering. (a) Camera poses for data collection and evaluation. (b-d) Performance ranges for methods trained
with/without random cropping (RC) and view augmentation (VA).

lection and policy deployment, ensuring visually consistent
scenes and reducing the training-deployment visual gap. Em-
bodiment Segmentation significantly improves policy perfor-
mance, as shown in Figure 9. Figure 9(a) highlights failure
cases without segmentation. In the wine balancing task, the
robot strikes the table, triggering safety stops due to improper
bottle handling. In the soccer ball kicking task, the robot’s
actions are inconsistent, shorter, and less precise than during
training. Quantitative results in Figure 9(b) further underscore
segmentation’s impact. Across 10 trials, segmentation enabled
8 successes in the wine balancing task, while the model
without it achieved none. Similarly, in the soccer ball kicking
task, segmentation resulted in 6 successes, compared to 2
without it. By aligning training and testing visual distributions,
Embodiment Segmentation ensures consistent and reliable
robot performance during the training and deployment.

Effects of Random Cropping and View Augmentation: Our
experiments show that random cropping (RC) and view aug-
mentation (VA) together enhance policy robustness to camera
pose variations. RC improves resilience to minor perturbations
such as small movements or shaking, while VA exposes the
model to a broader distribution of viewpoints during training.
We evaluated these techniques on the nail hammering task
(Figure 11), comparing three models: one trained with both
RC and VA, one with RC only, and one without either. The
combined use of RC and VA significantly expands the range of

camera configurations under which the policy can successfully
operate.
Benefits of Tool-Based Action Representation in Task
Space: Using the tool pose in the camera frame works
with a static camera but fails under camera movement due
to unreliable real-time tracking and incorrect end-effector
positioning in the base frame. Similarly, representing actions
in the base frame fails under base movement due to the
assumption of a fixed base-to-workspace transform. In
contrast, representing actions in task space is invariant to
both camera and base movement, enabling robust execution
even under large viewpoint shifts and base movements.

D. Detailed Analysis on Data Collection Efficiency and Af-
fordability

We compare various data collection methods for robot
imitation learning, focusing on throughput, reliability, cost,
usability, and precision. Our evaluation includes teleoperation
tools like Gello and Spacemouse for 6DOF (UR5e) and
7DOF (Kinova Gen3) robots, alongside methods such as
Visual Imitation Made Easy, handheld grippers (e.g., UMI and
LEGATO), and devices like VR (Meta Quest 2), AR (Apple
Vision Pro), and Kinematic replicate (Gello).

1) Data Collection Efficiency: Our framework achieves
significantly higher data collection throughput than traditional
methods, enabling more demonstrations within the same time-
frame. The improvement is driven by the natural and intuitive
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(a) ii. Camera Shaking in Nail Hammering
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Fig. 12: Robustness to Camera and Base Movement. (a) Camera Pose Robustness: The policy demonstrated the ability to handle camera shaking across three tasks—meatball
scooping, nail hammering, and pan flipping. The first row shows the camera view, while the second row provides a scene overview with the shaking motion. (b) Robot Base
Robustness: The policy successfully compensated for base shaking, even when the shaking frequency exceeded the robot’s control frequency. (c) Chicken Head Stabilization:
At lower base movement frequencies, the end effector displayed a stabilization effect similar to a chicken’s steady head. (d) Combined Robustness: The policy maintained task
performance under simultaneous camera and base shaking.

efficiency of human manipulation, which ensures faster and
more reliable task execution. Figure 13(a) highlights the supe-
rior manipulation capabilities of human hands, while Figure 14
quantifies the substantial time savings per episode. For nail
hammering and meatball scooping, Gello and Spacemouse
were used as teleoperation methods, respectively. Human
hands reduced data collection time by 73% and 81% for
nail hammering and meatball scooping, with consistently low
variation in performance. In more complex tasks like pan
flipping, wine balancing, and soccer ball kicking, teleoperation
methods failed entirely due to limitations such as lack of
tactile feedback, delays, and difficulty handling dynamic or
precise actions. Our method further reduces data collection
time by 41% compared to handheld grippers such as UMI [8]

in nail hammering. UMI proved ineffective in wine balancing
and pan flipping due to tool inertial slippage or contact-
induced displacement, and failed in soccer kicking because of
difficulty localizing large, fast motions. Moreover, it requires
rich textures to build a pre-collection map, which our method
does not. These results underscore the superior efficiency,
robustness, and versatility of human manipulation as a scalable
solution for high-quality robot learning datasets.

2) Reliability: Figure 13(b) and Figure 13(c) illustrates
typical failure cases with Gello, Spacemouse, and UMI [8],
which frequently encounter issues such as safety stops or
collisions during data collection. In contrast, our method
ensures smooth, uninterrupted operation, avoiding these limita-
tions. Traditional methods face significant challenges in high-



(a) Human Hand Demonstration

Pan Flipping Wine Balancing

Meatball ScoopingSoccer Ball Kicking

(b) Teleoperation (c) Hand-Held Gripper

Teleoperation delay

Lacks tactile feedback

Slow movement

Not fast enough

Tool inertial slippage

Contact-induced displacement

Fig. 13: Data Collection Efficiency and Reliability. (a) Human hands excel in manipulation tasks, leveraging natural and intuitive efficiency. (b) Failure cases for Gello and
Spacemouse include insufficient speed, lack of tactile feedback during data collection, safety stops, collisions, teleoperation delays, and difficulty handling high-speed or complex
tasks. (c) Failure cases for handheld grippers such as UMI [8], where issues arise from tool slippage due to inertia or displacement caused by contact forces.

TABLE IV: Comparison of Data Collection Methods. This table compares various data collection methods for robotics. For cost, we
calculate only the additional expenses required for data collection, excluding cameras, as they are considered a basic and commonly used
sensor for robots rather than an additional purchase. Each method is assessed based on cost, ease of use, required expertise, precision, and
maintenance effort. Our method stands out as cost-free, easy to use, highly precise, and requiring minimal maintenance.

Method Cost Ready-to-Use Pre-Knowledge Required Precise Maintenance Expense

Visual Imitation Made Easy [29] $340 No Yes No Moderate
UMI [8] $371 No Yes Yes Moderate
LEGATO [22] $1060 No Yes Yes Moderate
Spacemouse [9] $169 Yes Yes Yes Low
VR (Meta Quest 2 [17]) $300 Yes Yes No Moderate
AR (Apple Vision Pro [1]) $3499 Yes Yes Yes High
Gello [27] $272 No Yes No Moderate
Ours $0 Yes No Yes Minimal
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Fig. 14: Quantitative Comparison of Data Collection Methods. Human hands
reduce data collection time by 73% for nail hammering and 81% for meatball scooping,
while maintaining low variation. Teleoperation fails in dynamic and high-precision tasks.
In nail hammering, human hands are 41% faster than UMI [8], which also struggles with
dynamic and low-texture environments.

speed or complex tasks. For example, Gello and Spacemouse
struggle with replicating the extreme dynamics and precise
motions required for flipping objects like eggs during pan
flipping, often resulting in unsuccessful attempts. Similarly,

teleoperation delays prevent timely strikes during soccer ball
kicking, consistently leading to missed kicks and repeated
failures. In tasks like wine balancing, the absence of tactile
feedback impairs precision during the data collection, causing
the wine bottle to tip over during data collection. Further-
more, in meatball scooping, the velocity vectors generated by
Spacemouse input lead to jerky trajectories with redundant
waypoints, significantly reducing efficiency. These challenges
make effective training impractical with traditional methods.
By leveraging human manipulation, our framework not only
addresses these limitations but also provides a reliable and
scalable solution for dynamic and precision-demanding tasks.

3) Discussion of Data Collection Methods: Table IV com-
pares various data collection methods based on cost, us-
ability, expertise requirements, intuitiveness, and precision.
Our method incurs no additional cost ($0), unlike hardware-
dependent solutions like UMI and LEGATO, which demand
significant investment. This affordability makes our approach
accessible to users from diverse backgrounds without fi-
nancial constraints. Unlike hardware-based systems such as
UMI, LEGATO, Gello, and Spacemouse, which are prone
to malfunctions and maintenance issues, our hardware-free
framework ensures reliability and eliminates repair delays or
expenses. Additionally, it requires no supplementary 3D print-
ing, in contrast to approaches like Visual Imitation Made Easy,
UMI, and LEGATO. The simplicity of our design promotes



inclusivity in collecting large-scale dataset for robot learning
research. Our method also offers a more natural experience
compared to tools like Spacemouse, while being far more cost-
effective than VR and AR devices. Moreover, systems like
Gello and Spacemouse lack the precision necessary for dy-
namic tasks, a limitation addressed by our approach. Overall,
our method is a cost-effective, and accessible solution for data
collection, overcoming key drawbacks of existing approaches
while reducing complexity and maintenance needs.
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