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Abstract— Manipulation in a narrow passage is a common
challenge in both industrial and household environments, often
resulting in infeasible solutions or high computational cost.
To address the risk of optimization failure caused by narrow
passage, we propose a homotopy optimization framework that
maintains feasibility throughout the process via a sequence of
easier subproblems specifically designed for narrow passage
scenarios. The approach begins by decomposing the environ-
ment into convex objects and initializing collision constraints
using only a subset of these objects. The remaining obstacles
are then introduced progressively through an interpolation of
signed distance–based collision constraints. This process yields
a series of intermediate subproblems that gradually guide the
solution toward the final, fully constrained problem, while
avoiding infeasible states. We demonstrate the effectiveness of
the framework through a set of examples, showing its ability to
reliably solve manipulation planning problems in environments
with narrow passages.

I. INTRODUCTION

Manipulation in constrained or cluttered environments
frequently demands solving difficult path planning prob-
lems, especially through narrow passages [1], [2], [3], [4].
These challenges arise in a wide range of tasks, from
structured household manipulation to operations in indus-
trial workspaces. Sampling-based planners such as PRM [5]
and RRT [6] are easy to formulate and offer probabilistic
completeness [7], but their sampling efficiency degrades sig-
nificantly in narrow environments, making it difficult to find
feasible paths within a reasonable time. Optimization-based
planners such as CHOMP [8] and TrajOpt [9], support highly
flexible problem formulations that can incorporate a wide
range of costs and constraints, and usually converges rapidly.
However, if the waypoints penetrate obstacles deeply, the
optimization turns ill-posed, and the solver can stall in an
infeasibility [10].

To overcome both limitations we adopt a homotopy–based
strategy. Homotopy optimization method [11] starts from
a simplified problem that is easy to solve and then incre-
mentally restores the original complexity while continuously
refining the solution. In our setting the simplification is
achieved by relaxing collision constraints so that the ini-
tial feasible space is wide; as the algorithm proceeds we
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Fig. 1: Optimization results for manipulator path planning
during tool extraction from a narrow gap, utilizing the
proposed collision constraint interpolation framework.

gradually tighten these constraints, steering the path toward
a valid solution without ever allowing deep penetration to
corrupt the optimization process.

II. COLLISION-CONSTRAINT INTERPOLATION

Our goal is to keep the path feasible throughout homotopy
optimization process, thereby sidestepping the deep penetra-
tion problem. Let the environment be decomposed into a set
of convex objects Vtot = {v1, · · · , vntot}. Beginning with an
environment initialized with a subset of the convex objects
Vinit ⊆ Vtot, we introduce the others in batches that satisfy:

Condition 1 (Leaf set): A set Vℓ with respect to V is a
leaf set if

1) every vℓ ∈ Vℓ intersects exactly one object in V , and
2) no two elements of Vℓ intersect each other.

Note that attaching a leaf set Vℓ to V cannot create or destroy
cycles, thereby the homotopy equivalence is preserved.

A. SDF Interpolation between Convex Objects

Let v1 and v2 be intersecting convex objects. We interpo-
late their signed distance functions (SDFs) by

sdαv1→v2(x) = (1− α) f
(
sdv1(x)

)
+ α f

(
sdv2(x)

)
(1)

where sdv(·) : R3 → R is a SDF of an object v, α ∈ [0, 1] is
an interpolation variable, and f(·) : R→ R is an exponential
shaping function, defined as:

f(x) =
eηx − 1

η
, η > 0, (2)

Because f is convex and non-decreasing, and each sdvi

is convex [12], the composite (1) is convex for every α.
Consequently its sub-zero-level set

vαv1→v2 :=
{
x | sdα

v1→v2(x) ≤ 0
}



Fig. 2: Object interpolation process using proposed shaping
function (2) with η = 40 (top row), η = 15 (middle row)
and linear interpolation η → 0 (bottom row).

is a convex object satisfying v1 ∩ v2 ⊆ vαv1→v2 ⊆ v1 ∪ v2.
The exponential shaping suppresses the sharp ridges that
a linear blend (η = 0) would generate along the medial
axis, thereby preventing abrupt flips of contact normals that
hamper gradient-based optimization, as shown in Fig. 2

B. Homotopy-Preserving Addition of Leaf Set

For a k-th batch, we consider a set Vℓ
k = {vℓj} ⊆ Vtot

which is a leaf set with respect to a current set Vk. We then
interpolate their SDFs as:

sdαVk+Vℓ
k
= min

(
sdVk

, sdα
1 (x), · · · , sdα

nℓ
(x)

)
,

where sdαj (x) := sdα
vσ(j)→vℓ

j
(x), and vσ(j) ∈ Vk is the unique

convex object that intersects with vℓj (Condition 1-1). The
resulting occupied space can be written as:

O
(
sdαVk+Vℓ

k

)
= OVk

∪
nℓ⋃
j=1

{
vαvσ(j)→vℓ

j
∩ vℓj

}
︸ ︷︷ ︸

=:vα
j

where O(·) denotes the zero–sub-level set of a function. This
expression corresponds to gluing a new leaf set consists
of vα1 , · · · , vαnℓ

to the existing environment. Since such an
operation preserves topological features, the interpolation
maintains the homotopy type of OVk

for all α ∈ [0, 1].

III. MANIPULATION PATH PLANNING
USING COLLISION CONSTRAINT INTERPOLATION

A typical path planning optimization can be formulated
as:

minimize
X1:T

T−1∑
t=1

∥∥Xt+1 −Xt

∥∥2 + fi(X1) + fg(XT )

subject to min
x∈W (Xt)

sdVtot
(x) ≥ d̂, t = 1, . . . , T,

(3)

where X1:T is the optimization variable representing config-
uration of waypoints, T is the total number of waypoints,

Algorithm 1 Narrow passage path planning

1: Input: Total set of nodes Vtot
2: Determine Vℓ,Vinit by identifying leaf sets
3: Initialize environment V1 = Vinit and path X1:T

4: for k = 1, · · · , |V l| do
5: α = 0
6: while α < 1 do
7: Refine the path X1:T by optimization (4)
8: α← min(α+∆α, 1)
9: end while

10: Vk+1 = Vk ∪ Vℓ
k

11: end for
12: return Vseq

fi and fg is a cost function for initial and goal waypoints,
W (Xt) is the surface of the robot at each waypoint Xt, and
d̂ ∈ R+ is the predefined safe distance.

To cope with challenges of narrow passages, we replace
the collision avoidance constraint in (3) by a sequence
of progressively harder sub-problems obtained through the
collision constraint interpolation of Sec. II. Each subprob-
lem keeps the same objective function but enforces relaxed
constraints:

min
x∈W (Xt)

sdαVk+Vℓ
k
(x) ≥ d̂ (4)

with the interpolation variable α rising from 0 (wide free
space) to 1 (exact geometry) while leaf sets Vℓ

k are suc-
cessively attached to the current environment Vk. Solving
these subproblems in order yields a path that remains fea-
sible throughout the homotopy and ends in a collision-free
trajectory for the original, unrelaxed problem. The overall
path planning algorithm is explained in Algorithm 1.

To solve the subproblem (4), we employ Sequential
Quadratic Programming (SQP). The resulting Quadratic Pro-
gramming (QP) at each iteration is solved using SubADMM
[13], which is particularly adept at stably and efficiently
solving conflicting constraints common in narrow passage
path planning.

IV. EVALUATIONS

We test our framework in two different manipulation
problems, 1) placing dishes on a drying rack, 2) extracting a
box from a narrow gap. The scenarios are compared against
the results obtained using baseline planners from TrajOpt [9],
OMPL [14] and CHOMP [8]. The timeout for the OMPL
was set to 30 seconds and 50 seconds for each respective
scenario.

A. Placing Dishes on the Rack

Inserting a dish into a narrow gap of a drying rack is
challenging for a manipulator [15]. The thinness of the rack
makes deep penetration more likely, resulting in being stuck
in infeasibility. For the same reason, even achieving the
feasible goal position is challenging for this scenario.

We define the objective function as the distance to an
approximate reference pose located at the center of the rack,



Fig. 3: Results of a successful path planning using the
proposed framework for the dish insertion task.

facing horizontal direction. Additionally, the Cartesian path
length objective function and a hard constraint on the initial
joint position are incorporated. By employing our proposed
initialization scheme and refinement process, feasible final
position of the plate placed on the drying rack, along with a
feasible path could be achieved.

Table I compares the result of the optimization with
and without collision constraint interpolation. Success time
shows the mean and standard deviation of the elapsed time
of success cases, while total time shows both success and
failure cases. The tests are conducted using combinations
of three different shapes of dishes and 20 different racks.
The results indicate that our method outperforms the one
without collision constraint interpolation in both success rate
and computation time.

Method Success Total time (s) Success time (s)

Proposed 58/60 3.56 ± 0.69 3.95 ± 0.68
Without interpolation 23/60 7.06 ± 0.33 7.42 ± 0.27

TABLE I: Ablation study of dish placing with and without
collision constraint interpolation.

Method Success Total time (s) Success time (s)

Proposed 20/20 3.28 ± 0.61 3.28 ± 0.61

RRTConnect 9/20 20.08 ± 11.18 10.45 ± 10.32
BiTRRT 10/20 22.21 ± 9.91 16.24 ± 11.10
TRRT 2/20 26.37 ± 9.02 1.36 ± 0.00
BiEST 4/20 23.42 ± 9.91 16.24 ± 11.10
BMFT 2/20 21.34 ± 7.86 10.85 ± 8.33

PRMstar 0/20 31.67 ± 0.90 -
LazyPRM 0/20 30.03 ± 0.00 -
KPIECE 1/20 22.20 ± 9.09 8.48 ± 0

BKPIECE 4/20 21.34 ± 7.86 10.85 ± 8.33

TrajOpt 0/20 4.76 ± 1.27 -
CHOMP 2/20 22.74 ± 2.58 15.28 ± 0.03

TABLE II: Comparison with other methods for the task of
placing dish, showing the planning time and success rate,
with the goal position provided by our framework.

Conventional planning methods typically require a prede-
fined goal pose. To compare our proposed framework with

Method Success Total time (s) Success time (s)

Proposed 30/30 6.52 ± 0.69 6.52 ± 0.69

RRTConnect 1/30 48.83 ± 3.54 32.91 ± 0.00
BiTRRT 19/30 30.33 ± 14.23 23.15 ± 12.80
TRRT 0/30 50.03 ± 0.00 -
BiEST 0/30 50.07 ± 0.16 -
BMFT 1/30 49.51 ± 4.98 32.41 ± 0.00

PRMstar 0/30 50.28 ± 0.41 -
LazyPRM 0/30 50.04 ± 0.01 -
KPIECE 0/30 50.04 ± 0.015 -

BKPIECE 0/30 50.07 ± 0.14 -

TrajOpt 17/30 3.41 ± 1.09 2.71 ± 0.93
CHOMP 0/30 32.66 ± 11.20 -

TABLE III: Comparison with other methods for the task of
extracting tool from a narrow gap, showing the planning time
and success rate.

existing methods, we used the feasible final pose obtained by
our framework as the goal position for the other methods. We
tested twelve different shapes of dish racks, with the results
presented in Table II. As also shown in [2], conventional
sampling-based methods—except for BiTRRT [16]—faced
significant challenges in solving the narrow passage problem.
Despite making the problem easier for the baselines by pro-
viding the goal pose, our method still outperformed all others
in both success rate and computation time. Note that in the
case of TrajOpt, continuous collision detection is performed
by assuming a convex hull between waypoints. However,
this results in an overly conservative over-approximation for
the non-convex geometry of the dish, leading to failure in
successful execution.

B. Extraction of Tool from a Narrow Gap

Taking tool out through a narrow gap is a challenge task
for a manipulator, especially when the size of the tool is
large, or the obstacles are thin. Our objective is to optimize
the manipulator path, starting from a pose that grasping the
object, and extracting it out through a narrow gap. Fig 1
shows the result of the optimization.

We introduced slight randomness into the environment
configuration to create 30 environments. Each planner was
tested under these conditions. As shown in Table III,
CHOMP and sampling methods had low success rates and
longer planning times compared to our approach. While
TrajOpt achieved higher success rates and shorter planning
times than the sampling methods, its success rates were still
lower than our framework, which successfully planned in all
configurations.

V. CONCLUSIONS

The proposed framework leverages a homotopy optimiza-
tion strategy to effectively handle narrow passage manipu-
lation planning, but several limitations remain. First, new
obstacles can be introduced only when they form a leaf
set; environments whose topology violates this condition
fall outside the method’s scope. Second, the need for a
full convex decomposition adds preprocessing overhead,



and the repeated update of the interpolation parameter α
increases runtime in scenes that do not actually contain
extreme bottlenecks. Third, like any optimization approach,
the solver may converge to undesirable local minima. Future
research will study alternative homotopy schedules, relax
the leaf-set requirement to cover more intricate workspaces,
and integrate global exploration strategies to mitigate local-
minimum failure.
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