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Abstract— The multi-contact nonlinear complementarity
problem (NCP) is a naturally arising challenge in robotic simu-
lations. Achieving high performance in terms of both accuracy
and efficiency remains a significant challenge, particularly in
scenarios involving intensive contacts and stiff interactions. In
this paper, we introduce a new multi-contact NCP solvers based
on the theory of the Augmented Lagrangian (AL). We detail
how the standard derivation of AL in convex optimization
can be adapted to handle multi-contact NCP through the
iteration of surrogate problem solutions and the subsequent
update of primal-dual variables. Specifically, we present tailored
variation of AL for robotic simulations: the Cascaded Newton-
based Augmented Lagrangian (CANAL). We demonstrate how
CANAL can manage multi-contact NCP in an accurate and
robust manner, through robotic manipulation scenarios with
intensive contact.

I. INTRODUCTION

Contact simulation is a fundamental tool for the develop-
ment of manipulation intelligence, as it enables scalable data
acquisition, training, and safe testing of various algorithms
and designs. This significance has led to the development
of diverse open-source platforms [1]–[6], which are in-
creasingly being utilized in various research endeavors. An
essential focus in contact simulation for robotics revolves
around achieving results that are both accurate and efficient
in terms of memory and computation time. This presents
a comprehensive problem, encompassing geometry, contact
modeling, and numerical algorithms.

Modeling multi-contact interactions in simulation typi-
cally induces a nonlinear complementarity problem (NCP)
[7]. In practice, contact solvers must balance three cru-
cial factors: efficiency, accuracy, and robustness. However,
finding a universal solution remains challenging. Methods
developed for graphics and game engines tend to prioritize
efficiency and robustness, aiming to deliver visually plausible
results, even if early termination occurs. However, they are
known to converge slowly and may struggle with achiev-
ing highly accurate solutions. They frequently encounter
difficulties in handling intensive contact interactions (i.e.,
where constraints are dense and numerous relative to the
system degrees of freedom), which is common in robotic
manipulation. Conversely, achieving a highly accurate so-
lution for NCP often involves complex matrix operations
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Fig. 1: Snapshots of a robotic simulation using our multi-contact
solver. Top: bolt-nut assembly. Bottom: dish piling. Although inten-
sive contact formation and stiff interactions make these scenarios
challenging to simulate, our solvers successfully complete the
simulations less than a ms of time budget per step.

and numerically sensitive processes, which generally lack
efficiency and robustness for practical robotic applications.
Moreover, some approaches aim to enhance efficiency and
robustness by relaxing the contact constraints and exploiting
them during the solving stage. However, such relaxations can
be challenging to physically interpret, and the solutions they
produce may exhibit undesirable physical behaviors.

In this paper, we introduce Cascaded Newton-based Aug-
mented Lagrangian (CANAL), a new multi-contact solver for
robotic simulation. We explain how CANAL is advantageous
in scenarios requiring precise management of high-density
intensive contact, by leveraging a cascaded Newton scheme
within the theory of augmented Lagrangian (AL). Several
robotic simulations, particularly those involving challenging
multi-contact scenarios, are demonstrated to validate our
framework.

II. MULTI-CONTACT SIMULATION VIA AUGMENTED
LAGRANGIAN

A. Problem Formulation
We consider following discrete-time equations of motion:

Solve Av̂ = b+ JTλ

s.t. (Jv̂, λ) ∈ Sc
(1)

where A ∈ Rn×n, b ∈ Rn are the dynamics matrix/vector,
and Sc denotes the set of all pairs (Jv̂, λ) satisfying the
contact condition.



Contact condition typically includes nonlinear comple-
mentarity relation between primal (i.e., velocity) and dual
(i.e., impulse) variables. For each contact point, the corre-
sponding 3-DOF relation is

0 ≤ λi,n ⊥ Ji,nv̂ + ei,n ≥ 0

0 ≤ δi ⊥ µiλi,n − ∥λi,t∥ ≥ 0

δiλi,t + µiλi,nJi,tv̂ = 0

(2)

where ⊥ denotes complementarity, ei,n ∈ R and Ji,n ∈
R1×n denote the error and Jacobian for contact normal,
Ji,t ∈ R2×n is the Jacobian for contact tangential, and µi

is the friction coefficient and δi is the auxiliary variable.
The first condition, known as the velocity-level Signorini
condition, captures the complementarity nature of the contact
occurrence and gap. The remaining conditions involve the
complementarity between slipping velocity and the friction
cone boundary, with the maximal dissipation law indicating
that slip opposes the direction of impulse.

B. Augmented Lagrangian for Multi-Contact NCP

Although the problem (1) shares commonalities with op-
timization, it diverges due to the introduction of comple-
mentarity relations between primal and dual variables. Our
aim is to establish a foundation for deriving AL techniques
specifically tailored to multi-contact. We start by equivalently
expressing (1) as follows:

Solve Av̂ = b+ JTλ

s.t. (z, λ) ∈ Sc, Jv̂ = z
(3)

where z ∈ Rnc serves as the slack variable for the constraint
interface. The expression in (3) bears resemblance to the
optimality condition of the following optimization problem:

min
v̂,z

1

2
v̂TAv̂ − bT v̂ + g(z) subject to Jv̂ = z (4)

as the matrix A is always symmetric positive definite. In
this context, g serves to enforce the constraint in dynamics,
although (z, λ) ∈ Sc is not integrable into the function if
the multi-contact condition included. Recalling the structure
of augmented Lagrangian [8] applicable to the optimization
problem (4), we can similarly solve (3) as follows:

Solve
[
A+ βJTJ −βJT

−βJ βI

] [
v̂
z

]
=

[
b− JTu
u+ λ

]
s.t. (z, λ) ∈ Sc

(5)

u← u+ β(Jv̂ − z). (6)

The rationale of the above structure is that, at the fixed-
point of the iteration (therefore, Jv̂ = z), the result satisfies
both dynamics equation and constraint relation. Similar to
the original augmented Lagrangian, the process can be inter-
preted as iterating between solving the problem relaxed via
a penalty term and updating the Lagrange multipliers. We
refer this relaxed problem (5) as the surrogate problem.

C. Closed-Form Formulation of Slack Variables

Compared to the original problem (1), the surrogate prob-
lem (5) should be easier to solve in order to maintain the
rationality of the framework. A crucial difference between
(1) and (5) is that the constraint condition is defined on the
slack variable z as shown below:

βz = βJv̂ + u+ λ, s.t. (z, λ) ∈ Sc. (7)

This implies that the relationship between z and λ is matrix-
free and involves only a simple scalar weight β. Based on
this feature, we can derive the closed-form representation for
λ (therefore, also for z) with respect to v̂ by substituting (7)
into the contact condition (2) as

λi = Πstrict
C (−βJiv̂ − ui − βei) (8)

where ΠC denotes the projection onto the friction cone C.
Specifically, the projection λi = Πstrict

C (λ∗
i ) is carried out by

the following steps:

λi,n = max(λ∗
i,n, 0)

λi,t = ΠC(λi,n)(λ
∗
i,t).

(9)

Here, C(λi,n) represents the cross-section of C where the
plane at height λi,n intersects the cone. This nested projec-
tion is distinct from the closest distance projection, com-
monly known as the proximal operator when applied to the
indicator function of the friction cone [9]. As in [10], we
refer to (9) as the strict operator as the resulting (zi, λi)
strictly satisfies the contact condition (2).

The resulting (8) derived above allows us to write it as:

λi = T (λ∗
i ) where λ∗

i = −βJiv̂ − ui − βei (10)

where T is a closed-form operator which is continuous yet
may nonsmooth depending on the constraint type. Accord-
ingly, by the linear relation (7), the slack variable z is also
expressed in closed-form with respect to v̂. Based on the
closed-form operation (10), solving (5) can be now expressed
as solving following nonlinear equation:

r(v̂) = Av̂ − b−
∑
i

JT
i λi

= Av̂ − b−
∑
i

JT
i T (−βJiv̂ − ui − βei)

(11)

then computing z = Jv̂ + 1
β (u + λ) accordingly. Due to

the projection operator (9), r : Rn → Rn is a continu-
ous, yet semismooth equation. Therefore, one can handle
the surrogate problem by solving this nonlinear equation
(11) using the Newton method, whose theories developed
under semismooth case [11] by employing the generalized
derivatives.

However, typical (semismooth) Newton methods are
known to exhibit superlinear convergence near the solution
but lack robustness. Furthermore, the derivative of the closed-
form operator (10) might become non-symmetric in contact
cases, and cannot guarantee that dr

dv̂ will always be non-
singular. This issue makes the computation both expensive
and unreliable.



III. CASCADED NEWTON-BASED AUGMENTED
LAGRANGIAN

A. Cascaded Structure

A crucial issue of the Newton-based solution of (11) is that
the landscape of the merit function 1

2∥r(v̂)∥
2 is non-convex.

Our core strategy to address this issue employs a cascaded
method that relaxes each surrogate problem into a convex
form, facilitating fast and stable solutions, while updating
terms at each AL step to compensate for discrepancies
between the convex problem and the original NCP. For the
convex relation, we utilize the equivalence of (z, λ) ∈ Sc
and (2) with the following condition:

C ∋ λi ⊥ zi +

 0
0

µi∥zi,t∥


︸ ︷︷ ︸

pi

∈ C∗ (12)

where C∗ denotes the dual cone of C. This equivalence
can be easily verified, as we refer [12] for details. The
reformulated relation in (12) essentially constitutes a cone
complementarity condition, if the perturbation term pi is
excluded.

A key idea of our cascaded Newton approach is to
substitute the perturbation term pi by borrowing zi from the
previous AL iteration. In other words, we treat pi as a con-
stant in every surrogate problem, and temporarily consider
the relationship between zi and λi as a cone complementarity
condition. Consequently, in the (l + 1)-th AL iteration, we
solve the following nonlinear equation that replaces the strict
operator (8) with the proximal operator:

r(v̂l+1) = Av̂l+1 − b−
∑
i

JT
i λl+1

i

λl+1
i = Πprox

C (−βJiv̂l+1 − ul
i − βẽli︸ ︷︷ ︸

λ̃∗
i

) (13)

where ẽli = ei + pli = ei +
[
0 0 µi∥zli,t∥

]T
. Even after this

replacement, the nonlinear equation in (13) remains semis-
mooth. However, we can demonstrate that it is integrable, as
detailed in the following proposition. Note that to streamline
the explanation, we will focus exclusively on the contact
constraints below, as the other types (i.e., hard and soft)
follow straightforwardly.

Proposition 1: The function r(v̂) from (13) is the deriva-
tive of the following strongly-convex function:

h(v̂) =
1

2
v̂TAv̂ − bT v̂ +

∑
i

1

2β
∥λi∥2 (14)

Proof: The derivative of h(v̂) can be expressed as:

dh(v̂)

dv̂
= Av̂ − b−

∑
i

JT
i

dλi

dλ∗
i

T

λi

= Av̂ − b−
∑
i

JT
i λi

The latter equality holds due to the identity λT
i (λi − λ∗

i ) =
0 in the proximal operator. The symmetric positive-definite

property of A ensures that the quadratic term is strongly
convex. Furthermore, since the squared distance to a convex
set is convex, ∥λi∥2 is convex with respect to λ∗

i , and thus
also for v̂. Therefore, h(v̂) is a strongly-convex function.

This result is closely related to those presented in [13],
[14], although the objective function is defined differently
based on our AL-based formulation. Given this property, we
can apply the exact Newton method to the strongly-convex
function (14) by computing the derivative of r(v̂) (i.e., the
Hessian), which is proven to exhibit global convergence [8].

B. Newton Step

Computing the derivative of r(v̂) in (13) with respect to
v̂ is straightforward, except for the part involving T . As
the operator T is a proximal operator on a friction cone,
it involves a continuous concatenation of three formulaic
forms, yet the function is semismooth at the connection
points. Below, we provide derivative of each form which
can be obtained from a few algebraic calculation:

dλi

dλ̃∗
i

=


03×3, open
I3×3, stick

1
µ2+1

µ2
i I2×2 +

µiλ̃
∗
i,n

∥λ̃∗
i,t∥

P (λ̄i,t) µiλ̄
T
i,t

µiλ̄i,t 1

 , slip

(15)

where λ̄∗
i,t is the normalized vector of λ̃∗

i,t and P (λ̄i,t) =
I − λ̄i,tλ̄

T
i,t is the tangential projection matrix. Then the

derivative can be written as
dr(v̂)

dv̂
= A+

∑
i

βJT
i

dλi

dλ̃∗
i

Ji. (16)

Due to the structure given in (15), and consequently the
matrix (16), is guaranteed to be symmetric positive definite,
therefore always invertible. Followingly, the direction of the
Newton step is computed as

d(v̂) = −
(
dr(v̂)

dv̂

)−1

r(v̂) (17)

where the d(v̂) denotes the direction of v̂ update.
Computation of the step (17) requires the linear solving

of (16), therefore assemble and factorization of the matrix
is necessary. For better efficiency, we can exploit sparsity
pattern of the inertia matrix and the constraint Jacobian
during the process.

C. Exact Line-Search

Drawing from well-known convex optimization theory [8],
we can guarantee that (17) provides a descent direction.
However, we still need to integrate a suitable line-search
scheme to ensure global convergence. Here, the line-search
problem can be described as following one-dimensional,
strictly convex optimization problem:

min
α>0

f(v̂ + αd(v̂)). (18)

Similar to [14], we can find a globally optimal solution of the
problem (18) using the rtsafe algorithm, which effectively



Algorithm 1: Multi-Contact Simulation via CANAL

1 while simulation do
2 initialize l = 0, v̂0, z0, β > 0, κ > 1, 0 < η < 1
3 while CANAL loop do
4 initialize v̂l+1 ← v̂l

5 compute ẽ based on zl

6 while Newton loop do
7 compute r(v̂l+1) (13)
8 if ∥r(v̂l+1)∥ < θNth then
9 break

10 end
11 compute Newton step d(v̂l+1) (17)
12 compute α via exact line-search (18)
13 v̂l+1 ← v̂l+1 + αd(v̂l+1)
14 end
15 update zl+1 and multiplier ul+1 (6)
16 if ∥Jv̂l+1 − zl+1∥ < θAL

th then
17 break
18 else
19 if ∥Jv̂l+1 − zl+1∥ > ζ∥Jv̂l − zl∥ then
20 β ← min(κβ, βmax)
21 end
22 end
23 l← l + 1
24 end
25 update system state using v̂l+1

26 end

combines the one-dimensional Newton-Raphson method and
a bisection scheme. In practice, we find that the Newton step,
when combined with the aforementioned exact line-search,
performs robustly even with large values of β. The overall
CANAL algorithm is summarized in Alg. 1.

IV. EXAMPLES

For examples, we consider two scenarios: bolt-nut assem-
bly and dish piling. Both scenarios are characterized by the
intensive formation of contacts and stiff interactions due
to the complexity of the geometry. Moreover, we model
light bowls and plates (0.1 kg) beneath a heavy pot (5 kg),
resulting in a challenging mass ratio for the stable simulation.

A. Single Step Test

To precisely evaluate the quantitative performance, we
measure the results of running different solvers: projected
Gauss-Seidel (PGS [15], [16]) and subsystem-based ADMM
(SubADMM [17]) single step at the same state and inputs.
For test case generation, we sample various configurations
of nut and dishes, then apply random external wrenches to
the objects. The performance of the solvers in these cases is
depicted in Fig. 2.

As shown, CANAL achieves significantly better accuracy
in less time compared to PGS. CANAL achieves the highest
accuracy, with residuals under 10−8, and exhibits over linear

Fig. 2: Comparison of CANAL, SubADMM, and PGS for the
bolt-nut assembly (top) and dish piling (bottom) simulation. Left:
Residual decrease over computation time. Right: Computation time
over iteration.

convergence. SubADMM, demonstrating first-order conver-
gence, struggles to achieve very high accuracy. Due to the
odd mass ratio present in the environment, the differences
in achievable residuals between the solvers are larger in
dish piling compared to those in the bolt-nut assembly.
This suggests that CANAL may be the more preferable
option in this case, although SubADMM remains a viable
choice for achieving moderate results in a very short time.
The trend in computation time per iteration is similar in
both scenarios; per-iteration cost ranks as follows: CANAL
> PGS > SubADMM, and the cost for each iteration in
CANAL tend to decreases as the iterations proceed.

B. Task Simulation

We perform a full task simulation using a Franka Panda
arm equipped with a Hebi X5 gripper or Allegro hand, as
depicted in Fig. 1. For performance validation, we limit the
computation budget for the solver to 1 ms for each time step.
As a result, simulations using CANAL successfully complete
the both task. In contrast, PGS solver fails, as significant
penetrations or jittery movements are generated due to its
lack of convergence.

V. CONCLUSION

In this paper, we introduce a new multi-contact solver
algorithm CANAL, based on the theory of augmented La-
grangian to handle multi-contact NCP. We variate original
AL-based structure into a cascaded form of convex optimiza-
tion, which can be solved by exact Newton steps, thereby en-
suring accurate and robust simulation results. We believe that
the development of contact modeling and solver is a valuable
step toward narrowing the sim-to-real gap. For future work,
we plan to integrate more diverse physical contact models
with our framework, further improving simulation fidelity in
complex contact scenarios.
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