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Fig. 1: Modeling deformable objects from RGB-D images presents a significant challenge due to occlusions and complex physical interactions.
Our Particle-Grid Neural Dynamics framework learns the behavior of deformable objects directly from real-world observations. To train the
model, we introduce a novel dense 3D tracking method that leverages foundational vision models for video tracking. The trained model
predicts the motion of dense particles for future object states and robot-object interactions. We demonstrate the ability of Particle-Grid Neural
Dynamics to model complex interactions across a diverse set of objects, including ropes, cloth, plush toy, box, and bread.

Abstract—Modeling the dynamics of deformable objects is
challenging due to their diverse physical properties and the
difficulty of estimating states from limited visual information.
We address these challenges with a neural dynamics framework
that combines object particles and spatial grids in a hybrid
representation. Our particle-grid model captures global shape and
motion information while predicting dense particle movements,
enabling the modeling of objects with varied shapes and materials.
Particles represent object shapes, while the spatial grid discretizes
the 3D space to ensure spatial continuity and enhance learning
efficiency. Coupled with Gaussian Splattings for visual rendering,
our framework achieves a fully learning-based digital twin of
deformable objects and generates 3D action-conditioned videos.
Through experiments, we demonstrate that our model learns
the dynamics of diverse objects—such as ropes, cloths, stuffed
animals, and paper bags—from sparse-view RGB-D recordings of
robot-object interactions, while also generalizing at the category
level to unseen instances. Our approach outperforms state-of-the-
art learning-based and physics-based simulators, particularly in
scenarios with limited camera views. Furthermore, we showcase
the utility of our learned models in model-based planning, enabling
goal-conditioned object manipulation across a range of tasks.

I. INTRODUCTION

Learning predictive models is crucial for a wide range of
robotic tasks. In deformable object manipulation, an accu-

rate predictive object dynamics model enables model-based
planning, policy evaluation, and real-to-sim asset generation.
However, developing dynamics models for deformable objects
that are both accurate and generalizable remains a significant
challenge. For example, physics-based simulators [12, 30] often
struggle to generalize to the real world due to the inherent sim-
to-real gap and the difficulties of system identification and state
estimation. Meanwhile, video-based predictive models [9, 52]
are computationally expensive, lack 3D spatial understanding,
and are highly sensitive to viewpoint and appearance changes.

Recent work has focused on learning particle-based dynamics
from RGB-D data, using GNNs to model particle sets as spatial
graphs [45, 54]. While promising, these methods struggle with
partial observations due to graph construction sensitivity and
require carefully tuned message-passing steps to balance global
context and smoothness. As a result, these approaches are often
limited to simple simulated environments or real-world objects
with trivially defined geometries, e.g., nearest neighbors.

To overcome these limitations, we propose particle-grid neu-
ral dynamics, a hybrid model combining object particles with
fixed spatial grids. The model takes particle kinematic states as
input and predicts velocity fields at grid points, using a global



Particle Features
Grid Velocity

Action

Model-Based Planning

G2P

Point 
Encoder

Iterative Rollout

Update

3D Action-Conditioned Video Prediction

+

Grid Positions

Particle Velocity

Point 
Encoder

Velocity 
Field

RGB-D Observation Particles

Xt, Vt

3DGS

Model

Interpolation

Initial Frame Action Sequence

Model

At

(a) Particle-Grid Neural Dynamics Model

(b) 3D Action-Conditioned Video Prediction

(c) Model-Based Planning

Action

X̂t+Δt, V̂t+Δt X̂T, V̂T

Fig. 2: Overview of proposed framework: Particle-Grid Neural Dynamics. (a) A diagram of our dynamics model. Given particles fused
from multi-view depth images as input, our model predicts dense per-particle motion by first using a point encoder to extract particle features
and predict the velocity field, which is then transformed into a grid representation to estimate the velocity distribution in 3D space. The
model updates particle positions with the predicted velocity to perform iterative rollouts. (b) Our framework enables 3D action-conditioned
video prediction by reconstructing objects with 3D Gaussian Splatting and interpolating the 6DoF transformation of Gaussian kernels using
the predicted particle motions. (c) The model can be integrated into model-based planning frameworks to generate plausible motions for
manipulating deformable objects.

point cloud encoder to extract comprehensive features. This
design enhances robustness to partial observations, supports
denser particle inputs, and regularizes predictions via the grid
structure for spatial continuity and efficiency. By combining
Lagrangian (particles) and Eulerian (grids) representations, our
model draws inspiration from physics-based simulators [41, 12],
while leveraging neural networks to generalize across materials
and operate under partial observability.

Our model is trained entirely from RGB-D videos of robot-
object interactions. We introduce a 3D particle fusion and
tracking pipeline that uses foundational vision models [18, 36,
15] to estimate segmentation masks and pixel tracks, which
are fused into persistent 3D trajectories for training.

Experiments show our method accurately simulates a wide
range of deformable objects, including ropes, cloth, plush toys,
boxes, paper bags, and bread, and outperforms state-of-the-art
baselines. It also integrates seamlessly with appearance recon-
struction techniques like 3D Gaussian Splatting (3DGS) [16],
enabling photorealistic renderings with improved accuracy.
We further demonstrate strong performance under sparse-view
settings and validate its utility for real-world manipulation via
integration with Model Predictive Control (MPC).

II. METHODS

A. Dynamics Model

1) State and Action Representation: In the dynamics model,
object particles are denoted by Xt ∈ R3×n, where n is the
number of particles, and t is the time. The velocity of the
particles, Vt ∈ R3×n is defined as the time derivative of X at
time t. The action At represents the external effects caused to
the object by the robot at time t.

2) Dynamics Function: We incorporate historical states from
previous h timesteps as additional inputs, and approximate the
function f using a neural network parameterized by θ:

X̂t+∆t = Xt +∆t · fθ(Xt−h∆t:t,Vt−h∆t:t,At). (1)

Our model utilizes a hybrid particle-grid representation to inject
inductive bias related to spatial continuity and local information
integration. The particle-grid dynamics function is comprised
of the following components:

fθ = hG2P · ggrid · ffield
ψ · f feature

ϕ , (2)

where f feature
ϕ is the neural network-based point encoder for

extracting feature from the input particles, ffield
ψ is the neural

network-based function for parameterizing a neural velocity
field based on the extracted features, and ggrid is a grid velocity
editing (GVE) control method to encode collision surfaces
and robot gripper movements, and hG2P is the grid-to-particle
integration function for calculating particle velocities from
grid-based velocity field.

B. Data Collection and Training
We collect training data through teleoperation and automatic

annotation using foundation models. Specifically, we record
multi-view RGB-D videos of random robot-object interactions.
For each camera view, we apply Segment-Anything [18, 36]
to extract persistent object masks and use CoTracker [15]
to generate 2D trajectories. Using depth information, we
perform inverse projection to map these 2D velocities into
3D, resulting in multi-view fused point clouds with persistent
particle tracking. To train the dynamics function fθ, the loss
function is defined as the mean squared error (MSE) between
the predicted and actual particle positions.
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Fig. 3: Qualitative Comparisons on Dynamics Prediction. Given initial states and actions, we show the prediction results of the GBND
baseline compared to our particle-grid neural dynamics model. The red spheres indicate the position and orientation of robot grippers. We
overlay the predictions with ground truth final state images to highlight the prediction errors. Our model’s predictions are more aligned with
the ground truth, offering higher-density particle predictions and fewer artifacts compared to the baseline.

C. Action-Conditioned Video Prediction and Planning

Our predictions can be integrated with 3D Gaussian Splatting
to achieve a realistic action-conditioned video prediction.
To transform Gaussians between frames, we first apply the
dynamics model to the point cloud set X, yielding the next-
frame prediction X̂. The 6-DoF motions of the Gaussian kernels
are interpolated using Linear Blend Skinning (LBS) [42].

Additionally, our model can be integrated with MPC for
model-based planning. Given RGB-D captures, we obtain object
particles through segmentation, inverse projection into 3D, and
downsampling. We use the Chamfer Distance between the
predicted state and the target state as the cost function, and
apply the MPPI [47] trajectory optimization algorithm.

III. EXPERIMENTS

We conduct data collection and experiments using a bimanual
xArm setup. The objects used in the experiments include rope,
cloth, plush toys, paper bags, boxes, and bread.

A. Dynamics Learning and Prediction

We visualize the particle prediction results of our method
alongside the baseline method, Graph-Based Neural Dynamics

(GBND) [53, 54], in Fig. 3. Our method’s predictions align
more closely with the ground truth images and also exhibit
higher resolution. In contrast, GBND predicts inadequate
particle motions for objects like cloth, plush toy, box, bread,
and generates artifacts for objects like rope.

B. Action-Conditioned Video Prediction and Planning
In Fig. 3b, we show the action-conditioned video prediction

results by reconstructing the object using 3D Gaussian Splatting
and deforming the Gaussians with dynamics predictions. The
scenes are reconstructed using video scans of a static workspace.
The results demonstrate that our model can generate 3D action-
conditioned video predictions with high visual fidelity.

C. Planning
In planning experiments, we evaluate the model’s ability

to integrate with MPC to generate actions for manipulating
deformable objects. Fig. 3c shows that our model produces
results that are visually close to the target. For example, in
the cloth lifting task, our method successfully lifts the cloth
from a folded initial state, using both arms simultaneously. In
rope manipulation, our method accurately bends the rope by
pressing downward.
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APPENDIX A RELATED WORK

A.1 Physics-Based Deformable Modeling.

The simulation of deformable objects is essential for
advancing both the modeling and robotic manipulation of
soft, flexible materials. Researchers have introduced various
analytical physics-based approaches, including, but not limited
to, the mass-spring system [24, 20], the Finite Element Method
(FEM) [10, 31, 7], the Discrete Elastic Rods (DER) [5, 6], the
Position-Based Dynamics (PBD) [30, 21, 23], and the Material
Point Method (MPM) [41, 12, 13, 29]. However, real-world
analytical deformable modeling remains challenging due to
the difficulty in property identification and state estimation.
While our method uses a hybrid particle-grid representation
similar to MPM, we leverage neural networks as message
integrators and reduce dependence on full-state information
as input. This enhances robustness to partial observations and
enables the handling of a wide variety of deformable objects
without requiring predefined material-specific constitutive laws.
Recently, the emergence of 3D Gaussian Splatting (3DGS)

[16, 28, 8] has enabled the fusion of Gaussian Splatting
reconstructions with physics-based models to simulate the
dynamics of deformable objects [49, 35, 56, 55, 1]. In our
particle-grid neural dynamics model, the particle motion
predictions can also be integrated with Gaussian Splatting
reconstructions, facilitating the simultaneous modeling and
rendering of deformable objects, purely learned from real data.

A.2 Learning-Based Deformable Modeling.

Learning-based dynamics models, which use deep neural
networks to model the future evolution of dynamic sys-
tems, have demonstrated effectiveness across various robotic
tasks [11, 51, 17, 57, 50, 4]. Among these learning-based
methods, Graph-Based Neural Dynamics (GBND) have shown
great promise, as they explicitly model spatial relational
biases within complex physical systems [19, 32, 37, 3, 45].
Previous research has investigated the use of GBND across
a range of material types, such as rigid bodies [14, 25, 2],
plasticine [39, 40], fabrics [22, 26, 33, 27], ropes [43],
and granular piles [44, 38]. Beyond simulation and single-
material scenarios, GBND has also demonstrated flexibility
and generalization in modeling diverse materials using a unified
framework [53, 54]. However, these approaches often operate
on spatially sparse graph vertices, rely on expert knowledge
to determine graph connectivity, and do not consider partial
observations. For learning dense particle dynamics, Whitney
et al. [46] propose transformer-based backbones for higher
computational efficiency. However, their work mainly focuses
on modeling rigid objects for grasping and pushing tasks. In
contrast, our work emphasizes deformable object modeling
using a hybrid particle-grid neural dynamics framework,
achieving dense particle prediction while remaining robust
to incomplete observations and flexible for diverse types of
deformable objects with distinct physical properties.

APPENDIX B METHODS

Our Particle-Grid Neural Dynamics framework models the
dynamics of objects represented by a set of particles. The
core of this framework is a dynamics function that predicts the
future motion of each particle based on its current and historical
states, as well as the current action of the robot’s end effector.
A detailed description of the model is provided in Section
B.1 and B.2. We introduce the data collection pipeline and
the model’s training method in Section B.3. Additionally, we
explore the integration of Particle-Grid Neural Dynamics with
3D Gaussian Splatting for 3D video rendering, as discussed
in Section B.4. The application of this model within a Model
Predictive Control (MPC) framework is covered in Section B.5.
An overview of our method is also provided in Fig. 2.

B.1 Particle-Grid Neural Dynamics

B.11 State Representation: We intend to learn a particle-
based dynamics model, which represents the target object as
a collection of particles Xt ∈ R3×n, where n is the number
of particles, and t is the time. The velocity of the particles,
Vt ∈ R3×n is defined as the time derivative of X at time t.



B.12 Action Representation: The action At represents the
external effects caused to the object by the robot at time t. We
define At as

At = (y,Tt, Ṫt,ot), (3)

namely, the combination of the end-effector type y, the 6-DoF
pose of the end effector Tt, its time derivative Ṫt, and the
end-effector state, specifically the open distance of the gripper
ot, a 1D variable.

B.13 Dynamics Function: We consider the change of state
caused by the state itself (e.g., objects falling due to gravity)
and the robot’s actions (e.g., robots grasping an object thus
making it move) in the object’s dynamic functions:

V̂t+∆t = f(Xt,Vt,At), (4)

where f is the dynamics function predicting the state evolution.
Since the particle representation typically cannot capture the
full state information (e.g., internal stress or contact mode with
other objects), a common practice is to incorporate historical
states as additional inputs for making predictions:

V̂t+∆t = f(Xt−h∆t:t,Vt−h∆t:t,At), (5)

where h is the history window size. In our neural dynamics
model, we approximate the function f using a neural network
parameterized by θ and derive the next particle positions by
applying forward Euler time integration:

X̂t+∆t = Xt +∆t · fθ(Xt−h∆t:t,Vt−h∆t:t,At). (6)

B.14 The Particle-Grid Model: Learning the neural dy-
namics parameters θ with an end-to-end neural network
usually leads to unstable predictions due to accumulative
error. Motivated by the use of hybrid Lagrangian-Eulerian
representations in MPM [41], our model also utilizes a hybrid
particle-grid representation to inject inductive bias related to
spatial continuity and local information integration. Specifically,
we define a uniformly distributed grid in the space as

Glx,ly,lz,δ = {(kxδ, kyδ, kzδ)|ki ∈ [li],∀i ∈ {x, y, z}}. (7)

The parameters lx, ly, lz, δ control the spatial limits and
resolution of the grid. Empirically, we set δ to 1 cm or 2 cm
to balance computational cost and resolution. To enforce
translational invariance during dynamics prediction, we always
translate the positions of the particles and the robot end effector
to the volume defined by Glx,ly,lz,δ .

The particle-grid dynamics function is defined by the
following components:

fθ = hG2P · ggrid · ffield
ψ · f feature

ϕ , (8)

where f feature
ϕ is the neural network-based point encoder for

extracting feature from the input particles (Sec. B.21), ffield
ψ is

the neural network-based function for parameterizing a neural
velocity field based on the extracted features (Sec. B.22), and
ggrid is a grid velocity editing (GVE) control method to encode
collision surfaces and robot gripper movements (Sec. B.24), and
hG2P is the grid-to-particle integration function for calculating
particle velocities from grid-based velocity field (Sec. B.23).

B.2 Model Components

B.21 Point Encoder: The point encoder encodes particle
positions and velocities to per-particle latent features Zt ∈
Rd×n, where d is the feature dimension:

Zt = f feature
ϕ (Xt−h∆t:t,Vt−h∆t:t). (9)

We use PointNet [34] as the encoder. The encoder captures
global information from the set of all particles, including the
object’s shape and the historical motion of the particles, which
are used to implicitly infer the object’s physical properties
and dynamic state. This is essential for handling incomplete
observations, where the feature extraction network must extract
occlusion-robust features for subsequent velocity decoding.

B.22 Neural Velocity Field: In this step, we use a neural
implicit function ffield

ψ to predict a spatial velocity grid, at time
t, from the extracted point features. For g ∈ Glx,ly,lz,δ, the
function ffield

ψ is instantiated as an MLP that takes the grid
locations xg and the corresponding locality-aware feature zg,t
as inputs, then predict per-grid velocity vector vg,t by

v̂g,t = ffield
ψ (γ(xg), zg,t), (10)

where γ is the sinusoidal positional encoding, and the locality-
aware feature zg,t is defined as the average pooling of particle
features within the neighborhood of grid location:

zg,t =

∑
p∈Nr(Xt,xg)

zp,t

|Nr(Xt,xg)|
, (11)

where Nr(Xt,xg) is the set of indices of particles within Xt

whose positions are within radius r of the grid location xg.
By incorporating the radius hyperparameter r, we can control
the number of particle features a grid point attends to, thus
encouraging the network to predict velocities that are dependent
on local geometry. Empirically, we set r = 0.2m.

B.23 G2P: After calculating the grid’s velocities, we
transfer from the Eulerian grid to Lagrangian particles via spline
interpolation. Following MPM, we utilize a continuous B-spline
kernel to transfer grid velocities v̂g,t to particle velocities v̂p,t:

v̂p,t =
∑
g∈G

v̂g,twpg,t, (12)

where the wpg,t is the value of the B-spline kernel defined on
the grid position xg and evaluated at the particle location xp,t.
It assigns larger weights to closer grid-particle pairs, achieving
smooth spatial interpolation. The predictions V̂ ∈ R3×n serves
as the final output of the dynamics function fθ and is used to
perform time integration in Eq. 6.

B.24 Controlling Deformation: We present two methods
for controlling deformations by interactions with external
objects: Grid Velocity Editing (GVE) and Robot Particles (RP).
GVE is inspired from MPM approaches and we use it for
grasped interactions and object-ground interaction. Simply put,
the operator ggrid changes the velocities on the grid to match
physical constraints. For ground contact, we project velocity
back from the contact surface and incorporate friction terms.
To define the motion of a rigidly grasped point, we calculate



Method Metric Cloth Rope Plush Box Bag Bread

MPM [12]

MSE ↓
0.176±0.107 0.138±0.072 0.163±0.148 − 0.226±0.026 0.034±0.014

GBND [54] 0.077±0.033 0.062±0.025 0.078±0.028 0.045±0.008 0.030±0.011 0.031±0.014

Particle 0.059±0.039 0.061±0.051 0.060±0.027 0.025±0.009 0.021±0.016 0.038±0.018

Ours 0.045±0.023 0.039±0.032 0.043±0.018 0.022±0.007 0.016±0.005 0.020±0.011

MPM [12]

CD ↓
0.156±0.091 0.115±0.054 0.153±0.207 − 0.183±0.032 0.031±0.010

GBND [54] 0.083±0.034 0.073±0.027 0.064±0.016 0.062±0.014 0.042±0.007 0.031±0.013

Particle 0.051±0.034 0.059±0.058 0.043±0.019 0.032±0.011 0.025±0.016 0.044±0.031

Ours 0.043±0.022 0.038±0.036 0.033±0.013 0.015±0.003 0.021±0.005 0.018±0.012

MPM [12]

EMD ↓
0.093±0.078 0.081±0.052 0.092±0.131 − 0.110±0.027 0.021±0.009

GBND [54] 0.035±0.017 0.036±0.016 0.032±0.010 0.032±0.008 0.016±0.005 0.016±0.008

Particle 0.029±0.024 0.036±0.037 0.025±0.013 0.018±0.006 0.012±0.010 0.023±0.016

Ours 0.022±0.013 0.021±0.021 0.017±0.007 0.016±0.005 0.009±0.003 0.010±0.008

TABLE I: Quantitative Results on Dynamics Prediction. We compare our method with the Mateiral Point Method (MPM) [12], Graph-Based
Neural Dynamics (GBND) [54], and a particle-based dynamics model without the grid representation. We report the mean and standard
deviation of the prediction error over a 3-second future horizon. The best results are highlighted in bold and blue.

the set of grid points Ggrasp,t within a distance a of the grasp
center point xgrasp,t. For each point g ∈ Ggrasp,t, we modify
the velocities as follows:

vg,t = ωt × (xg − xgrasp,t) + ẋgrasp,t (13)

where ωt is the angular velocity of the gripper at time t.
The Robot Particles method allows us to model nonprehensile

actions for the Box example in which the object is pushed.
Here, we represent the robot gripper with additional particles
that carry gripper action information, and fuse this into the
object point cloud. Specifically, at each step, we augment the
point cloud by

Xaug
t = Xt ∪Xrobot,t, (14)

Vaug
t = Vt ∪Vrobot,t, (15)

and model the particle-grid dynamics function on the aug-
mented point cloud. This injects action information into
particle features but does not explicitly force particles to
move at a prescribed velocity, thus supporting nonprehensile
manipulation. Our implementation samples points from the
gripper shape and calculates their velocities based on the end-
effector transformation from proprioception.

B.3 Data Collection and Training

We collect training data through teleoperation and automatic
annotation using foundation models. Specifically, we record
multi-view RGB-D videos of random robot-object interactions.
For each camera view, we apply Segment-Anything [18, 36]
to extract persistent object masks across the video. The
segmented objects are then cropped and tracked over time
using CoTracker [15], providing 2D trajectories. Using depth
information, we perform inverse projection to map these 2D
velocities into 3D, resulting in multi-view fused point clouds
with persistent particle tracking.

With the collected tracking data, we define particle sets
and their trajectories over a look-forward time window as
Xt−h∆t:t+K∆t ∈ R3×n×T , alongside corresponding robot
actions At−h∆t:t+K∆t, where K is the horizon length hy-
perparameter. Empirically, we set h = 2 and K = 5. Model

training begins from a given point cloud at time t, followed
by iterative dynamics model rollouts for K steps. Since the
dynamics function fθ is fully differentiable, we optimize the
network parameters ϕ and ψ using gradient descent. The loss
function is defined as the mean squared error (MSE) between
the predicted and actual particle positions:

L =

K∑
i=1

∥X̂t+i∆t −Xt+i∆t∥22, (16)

where X̂t+i∆t is the predicted particle positions at step i.

B.4 Rendering and Action-Conditioned Video Prediction

Our predictions can be integrated with 3D Gaussian Splatting
(3DGS) to achieve a realistic rendering of the results. The 3DGS
reconstruction of the object is defined as

G = {XGS,C,RGS,S,O}, (17)

where XGS, C, RGS, S, and O represent the Gaussian kernels’
center location, color, rotation, scale, and opacity, respectively.
To transform Gaussians between frames, we first apply the
dynamics model to the point cloud set X, yielding the next-
frame prediction X̂. The points X̂ can either be sampled from
XGS or obtained from additional point cloud observations
within the same coordinate frame with XGS. The 6-DoF
motions of the Gaussian kernels are interpolated using Linear
Blend Skinning (LBS) [42], which updates XGS and RGS by
treating X as control points and interpolating their predicted
motion to generate new Gaussian centers and rotations. We
assume that the color, scale, and opacity of the Gaussian
splatting remain constant.

B.5 Planning

Our model can be integrated with Model Predictive Control
(MPC) for model-based planning. Given multi-view RGB-
D captures, we obtain object particles through segmentation,
inverse projection into 3D space, and downsampling. The
downsampled particles serve as inputs to the dynamics model
for future prediction. With a specified cost function, the MPC
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Fig. 4: Qualitative Comparisons on Dynamics Prediction. Given initial states and actions, we show the prediction results of the GBND
baseline compared to our particle-grid neural dynamics model. The red spheres indicate the position and orientation of robot grippers. We
overlay the predictions with ground truth final state images to highlight the prediction errors. Our model’s predictions are more aligned with
the ground truth, offering higher-density particle predictions and fewer artifacts compared to the baseline.

framework rolls out the dynamics model using sampled actions
and optimizes the total cost. In our experiments, we use the
Chamfer Distance between the predicted state X̂ and the target
state Xtarget as the cost function:

J(X̂1:N ,A1:N ) =

N∑
t=1

CD(X̂t,Xtarget). (18)

We apply the Model-Predictive Path Integral (MPPI) [47]
trajectory optimization algorithm to minimize the cost and to
synthesize the robot’s actions. During deployment, we perform
online, iterative planning to achieve closed-loop control.

APPENDIX C EXPERIMENTS

Our experiments are designed to address the following
questions:

• How well does the particle-grid model learn the dynamics
of various types of deformable objects?

• Does the model perform effectively under limited visual
observation (e.g., sparse views)?

• Can we train a unified model for multiple instances within
an object category, and how well does it generalize to
unseen instances?

• Can the model improve the performance of 3D action-
conditioned video prediction and model-based planning?

We evaluate our method on a diverse set of challenging
deformable objects, including cloth, rope, plush toys, bags,
boxes, and bread. Our results demonstrate that it outperforms
previous state-of-the-art approaches in dynamics prediction
accuracy while remaining robust to incomplete camera views.
Additionally, we validate the model’s capability in category-
level training and its effectiveness in downstream applications,
such as video prediction and planning.

C.1 Experiment Setup

We conduct data collection and experiments using a bimanual
xArm setup, with each robot arm having seven degrees of
freedom. The objects used in the experiments include rope,
cloth, plush toys, paper bags, boxes, and bread. An illustration



Method Metric Cloth Rope Plush Box Bag Bread

MPM [12]

J -Score / IoU ↑
40.5±20.3 12.5±9.5 37.5±14.8 − 34.3±5.5 42.9±10.3

GBND [54] 56.7±13.9 19.2±15.6 42.7±10.5 83.0±5.5 78.0±82.8 49.8±13.9

Particle 58.5±18.7 24.4±17.7 49.0±12.5 82.2±6.1 74.5±11.7 39.3±15.4

Ours 63.2±16.4 29.5±16.5 59.7±11.1 82.4±5.0 76.8±8.8 55.8±10.1

MPM [12]

F -Score ↑
28.0±11.3 37.0±14.2 40.4±12.2 − 13.1±5.9 54.3±12.1

GBND [54] 32.2±18.2 41.9±18.9 35.8±11.2 74.0±8.8 54.6±13.4 60.1±16.1

Particle 41.0±19.6 45.4±19.5 43.0±14.0 73.1±8.8 52.7±19.5 46.8±17.7

Ours 42.6±20.4 52.6±17.6 53.8±12.9 68.8±12.9 60.3±14.7 64.6±12.7

MPM [12]

LPIPS ↓
0.141±0.060 0.052±0.018 0.103±0.085 − 0.145±0.020 0.059±0.020

GBND [54] 0.120±0.055 0.042±0.018 0.081±0.023 0.106±0.039 0.097±0.019 0.052±0.015

Particle 0.109±0.048 0.044±0.032 0.072±0.024 0.082±0.031 0.069±0.019 0.054±0.020

Ours 0.099±0.044 0.041±0.033 0.057±0.018 0.079±0.034 0.065±0.010 0.042±0.014

TABLE II: Quantitative Results on 3D Action-Conditioned Video Prediction. We compared our method on 3D action-conditioned video
prediction quality with MPM [12], GBND [54], and particle-based baselines. The J -Score/IoU and the F -Score measures mask similarities
and the LPIPS score measures appearance-wise similarities between predicted frames and ground truth video recordings. We report the mean
and standard deviation of the prediction error over a 3-second horizon. The best results are highlighted in bold and blue.
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Fig. 5: Quantitative Comparisons on Prediction under Partial
Views. We compare our method with the GBND baseline in the cloth
and paper bag categories while varying the number of input camera
views. We report the mean and standard deviation of the dynamics
prediction error. Our method consistently achieves lower error than
the baseline, and its error increase rate as the number of camera views
decreases is also lower.
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Fig. 6: Quantitative Comparisons on Generalization. Our method
is compared with GBND on seen and unseen instances of the rope
and cloth categories. We present the mean and standard deviation of
dynamics prediction error. Our method’s prediction error is lower on
both seen and unseen instances compared to the baseline.

of our workspace setup and objects is provided in Fig. 11.
C.10a Rope: A single robot arm grasps one end of a

rope, while the other end remains free on the table surface.
The robot manipulates the rope in 3D space, generating various

deformation patterns such as bending and dragging.
C.10b Cloth: Two robot arms grasp a rectangular piece

of cloth and manipulate it in 3D space. The lower half of the
cloth remains in contact with the table, resulting in significant
deformations under lifting, moving, and folding actions.

C.10c Plush: A single robot arm grasps one limb of a
plush toy while the rest of the toy remains in contact with the
table. The robot manipulates the plush in 3D space, creating
deformation patterns such as limb movements and flipping.

C.10d Paper Bag: One robot arm grasps and stabilizes
one side of an envelope-shaped mailer bag, while the other
manipulates it in 3D space. The robot performs various actions,
including opening, closing, and rotating the bag.

C.10e Box: Two robot arms are used to open and
close shipping boxes. The grippers remain closed, and the
manipulation is performed in a nonprehensile manner, utilizing
the surfaces of the grippers to push against the movable parts
of the box.

C.10f Bread: Two robot arms are used to tear pieces of
bread. The grippers remain closed, holding the bread in the
air. One robot arm stays still while the other pulls, creating
stretching effects and eventual breakage.

The baseline models in our comparisons are as follows:
• MPM-based deformable object simulation [12, 29]: This

baseline assumes a hyperelastic material with an unknown
uniform Young’s modulus and friction coefficient with
the tabletop. Parameter identification is performed via
gradient descent.

• Graph-Based Neural Dynamics (GBND) [54]: This model
represents objects using subsampled sparse vertices, along
with the robot end-effectors, and employs a Graph Neural
Network (GNN) to predict particle motions.

• Particle-based dynamics model (ours w/o grid): In this
baseline, we ablate the grid representation in our model
and directly query the velocity field at particle positions
to predict per-particle velocities.

For additional information on the experiment setups and
baseline implementations, please refer to Appendix ??.
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Fig. 7: Qualitative Comparisons on 3D Action-Conditioned Video Prediction. We show our method and the GBND baseline’s prediction
on two examples of rope and plush toy, compared with the ground truth video. The predictions are based on the 3DGS reconstructions on the
first frame (leftmost image) and the robot action sequence. Differences are highlighted with red dashed boxes. Our method aligns better with
the ground truth while the baseline method predicts visually nonrealistic deformations.
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Fig. 8: Qualitative Visualizations of Simulation from Scanned Scenes. Our method gives higher-quality video prediction results with
high-resolution Gaussians reconstructed from phone scans. Given the initial reconstruction (green frame), we apply our particle-grid dynamics
model to simulate the segmented object, and visualize from different views.

C.2 Dynamics Learning and Prediction

We evaluate accuracy using a held-out set of robot-object
interactions. The interaction videos are divided into 3-second
clips, and the dynamics rollout accuracy is assessed using 3D
point cloud metrics that compute the distance between predicted
particle positions and ground truth future points. The metrics
include Mean Squared Error (MSE), Chamfer Distance (CD),
and Earth Mover’s Distance (EMD). All metrics are calculated
with m or m2 as the unit of measurement. For the box category,
we use the Robot Particles control method representation, and
since it is not directly compatible with MPM. Therefore, we

omit MPM from the box comparison.

Quantitative results are shown in Table I, where our method
outperforms all baselines in terms of dynamics rollout accuracy.
We visualize the particle prediction results of our method
alongside the baselines in Fig. 4. Our method’s predictions
align more closely with the ground truth images and also exhibit
higher resolution. In contrast, GBND predicts inadequate
particle motions for objects like cloth, plush toy, box, bread,
and it generates artifacts for objects like rope.
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Fig. 9: Quantitative Comparisons on Planning. For four manipulation tasks—cloth lifting, box closing, rope manipulation, and plush toy
relocating—we present the error curve and the final success rate curve with respect to the error threshold for task success. The error is always
measured using the Chamfer Distance between the current and target point clouds. Our method outperforms the GBND baseline in both error
reduction rate and success rate.
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Fig. 10: Qualitative Comparisons on Planning. For each of the four tasks, we visualize a representative planning sequence for both our
method and the GBND baseline. Given similar initial states and the same number of planning steps, our method achieves a lower final error,
as measured by Chamfer Distance (CD), and produces results that are visually more similar to the target.

C.3 Sparse-View Dynamics Prediction

We evaluate the performance of our method in sparse-
view scenarios by training the model on partial observation
data. Specifically, during training, we use point cloud from a
randomly sampled number of camera views as model input.
During evaluation, we test the model’s performance with 1 to
4 camera views.

The results shown in Fig. 5 demonstrate that our model
outperforms the GBND baseline in dynamics prediction accu-
racy, regardless of the number of input views. Additionally, the

performance drop when decreasing the number of views is also
less significant than the baseline. For the cloth category, the
baseline performance drops significantly when decreasing from
4 camera views to 1 camera view, while our model maintains
a low prediction error.

C.4 Category-Level Model

Next, we assess the model’s ability to generalize across
multiple instances within the same category by training on
a combined dataset of various object instances. For ropes,
the model is trained on 4 distinct ropes and evaluated on 2
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Fig. 11: Experiment Setup. (a) Our robot workspace includes four calibrated RGB-D cameras positioned at each corner of the table, along
with a GELLO [48] system for teleoperating the dual xArm 7 robotic arms equipped with parallel grippers. (b) Our experiments involved six
types of materials: (i) a paper bag, (ii) a stuffed animal, (iii) three varieties of bread, (iv) three boxes of different shapes, (v) eight cloth
pieces varying in fabric type and size, and (vi) six ropes differing in length, thickness, and stiffness.

unseen ropes. For cloths, it is trained on 6 cloth instances and
tested on 2 unseen cloths. The 6 rope instances are cotton
rope, jute rope, utility rope, cable, paracord, and yarn, with
the cotton rope and utility rope included in the test set and
unseen during training. For cloths, the 8 instances include
a flannel blanket, cotton towel, microfiber cloth, cotton bed
sheet, curtain, wallpaper, mat, and foam sheet, with the flannel
blanket and foam sheet included in the test set. These instances
are selected to have diverse physical properties and shapes,
allowing us to thoroughly evaluate the model’s generalization.

The results in Fig. 6 show that our model achieves lower
prediction errors than the GBND baseline across both categories
and for both seen and unseen instances. Notably, for the
cloth category, the baseline method exhibits a significantly
performance drop on unseen instances, whereas our method
keeps a relatively low error, demonstrating better generalization
to novel objects at test time.

C.5 Action-Conditioned Video Prediction

For action-conditioned video prediction, we use the predicted
point cloud trajectories to interpolate Gaussian kernel trans-
formations using LBS [42]. We reconstruct Gaussians from
4 input views using Gaussian Splatting [16]. The Gaussians
are trained with a segmentation mask loss, following previous
works [54, 28]. Videos are rendered with a fixed input camera
pose. The video prediction quality is assessed using mask-based
metrics, including J -Score (IoU), F -Score (contour matching
accuracy), and the image-based metric LPIPS.

The resulting metrics are shown in Table II. Our approach
achieves the best overall performance. For categories with
relatively large objects, for instance boxes and paper bags, we
observe that spiky Gaussian reconstructions often negatively
impact mask prediction performance, especially when objects

undergo significant deformation. The higher mask alignment
scores in GBND and Particle baselines are largely due to
inadequate particle motion predictions.

In Fig. 7, we show the action-conditioned video prediction
results by reconstructing the object using Gaussian Splatting
from 4 views and deforming the Gaussians with predictions
from our dynamics model. Our method achieves higher-quality
rendering and better alignment with the ground truth.

In Fig. 8, we further demonstrate that our method can be
used for simulation based on high-quality phone-scanned GS
reconstructions. The scenes are reconstructed using video scans
of a static workspace. Coupled with our learned particle-grid
neural dynamics, we can generate 3D action-conditioned video
predictions with even greater visual fidelity.

C.6 Planning

In planning experiments, we evaluate the model’s ability to
integrate with MPC to generate actions for manipulating objects.
We test on 4 tasks with distinct object types: cloth lifting, box
closing, rope manipulation, and plush toy relocating. For each
task, we conduct 10 repetitive experiments. Performance is
assessed using error curves and task success rates.

The quantitative results are shown in Fig. 9. Across all four
planning tasks, our method achieves a lower terminal error and
a higher error reduction rate compared to the GBND baseline.
In Fig. 10, we visualize the initial states, intermediate steps, and
final states, comparing them to the target. In all four tasks, our
method produces results that are visually closer to the target.
For example, in the box closing task, our method successfully
lifts both sides of the box, whereas the baseline struggles to
predict the correct actions and often loses contact with the box.
In rope manipulation, our method accurately bends the rope



by pressing downward, while the baseline fails to achieve this
due to lower prediction resolution.

APPENDIX D DISCUSSIONS

D.1 Limitations

While we have demonstrated that Particle-Grid Neural
Dynamics can model diverse types of deformable objects,
the current framework has several limitations: (i) The current
formulation assumes a fixed number of particles during iterative
rollout, making it inapplicable to scenarios involving the
appearance or disappearance of particles. This limitation
could be addressed by correcting the particle sets with new
observations or modeling the per-frame visibility of particles.
(ii) The model implicitly infers an object’s physical properties
from its point cloud and short-term motion history. While
this is sufficient for modeling a single object instance or
multiple instances with distinct shapes and physical properties,
a more systematic approach to modeling physical properties
is needed for interpretable identification and adaptation at
test time. This could involve learning a parameter-conditioned
neural dynamics model [53]. (iii) Training the model and
applying it to video prediction depend on accurate predictions
from computer vision models such as Segment-Anything [18],
CoTracker [15], and Gaussian Splatting [16]. Failures in these
perception and reconstruction models could negatively impact
our method’s performance.

D.2 Conclusion

In this paper, we introduce Particle-Grid Neural Dynamics,
a novel framework for learning neural dynamics models of de-
formable objects directly from sparse-view RGB-D recordings
of robot-object interactions. By leveraging a hybrid particle-
grid representation to capture object states and robot actions in
3D space, our method outperforms previous graph-based neural
dynamics models in terms of prediction accuracy and modeling
density. This advancement enables the modeling of a wide range
of challenging deformable objects. Additionally, integration
with 3D Gaussian Splatting facilitates 3D action-conditioned
video prediction, simultaneously capturing both object geometry
and appearance changes, thereby creating a learning-based
digital twin of real-world objects. We further demonstrate
that our model can be applied to various deformable object
manipulation tasks, achieving improvements in both task
execution efficiency and success rate.
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