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Abstract— An open problem in industrial automation is to
reliably perform tasks requiring in-contact movements with
complex workpieces, as current solutions lack the ability to
seamlessly adapt to the workpiece geometry. In this paper,
we propose a Learning from Demonstration approach that
allows a robot manipulator to learn and generalise motions
across complex surfaces by leveraging differential mathematical
operators on discrete manifolds to embed information on the ge-
ometry of the workpiece extracted from triangular meshes, and
extend the Dynamic Movement Primitives (DMPs) framework
to generate motions on the mesh surfaces. We also propose an
effective strategy to adapt the motion to different surfaces, by
introducing an isometric transformation of the learned forcing
term. The resulting approach, namely MeshDMP, is evaluated
both in simulation and real experiments, showing promising
results in typical industrial automation tasks like car surface
polishing.

I. INTRODUCTION

In recent years, industrial automation has witnessed grow-
ing interest in integrating robotic systems for repetitive tasks
to increase productivity, enabling the human to face more
cognitive-demanding tasks. Still, there are several open chal-
lenges in developing intelligent platforms that can perform
motion on complex surfaces, such as polishing, grinding, and
cleaning. If the geometry of the workpiece is simple and the
job is not changing in time, an ad-hoc trajectory could be
generated offline for the specific operation through traditional
coding. Still, a majority of these tasks are performed by
human operators, as they require a high online adaptation
capability to cope with the complexity of the workpiece
shape. Automating the latter tasks is challenging, especially
in the context of flexible manufacturing, since it is not
possible to rely on pre-defined trajectories. Therefore, the
robot should inherit the human-like capability to adapt to
the workpiece geometry, and generalise motion patterns to
such a variety of shapes.

In this context, Learning from Demonstration (LfD) [1]
emerges as a promising approach to transfer human expertise
and knowledge to robotic systems by simply observing the
human behaviour. Once a set of demonstrations is collected,
either by visual observation or kinesthetic teaching [1], dif-
ferent mathematical frameworks can be used to encode such
motions. By describing motion as stable dynamical systems,
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Dynamic Movement Primitives (DMPs) [2], [3] provide a
compact representation that enables to generalise the learned
motion to different initial and goal configurations, and ex-
ecution speed, without model retraining or trajectory-shape
modification. Their extension on Riemannian manifolds [4],
[5], also enabled a wide variety of robotic applications
requiring control of the whole end-effector pose, such as
surface polishing [6]–[9].

Standard approaches treat the planning problem on curved
surfaces without exploiting its intrinsic geometry. Instead,
either 1) they assume a flat surface to perform bi-dimensional
planning, and use low-level control strategies to ensure that
the end-effector stays on the surface [9], or 2) they learn
the motion in the operational space of the robot [6]. The
main pitfall of these approaches is that they do not exploit
the a-priori knowledge of the surface geometry, which can
be obtained from CAD models or visual observations [10],
thus limiting the generalisation capabilities of the motion on
different surfaces.

To overcome this limitation, inspired by recent work on
geometric DMPs [11], [12], we propose a novel formula-
tion of differential operators on triangulated meshes that
enables both motion policy learning and execution of end-
effector paths on arbitrary surfaces. Differently from mesh-
based Riemannian Motion Policies [13], where the surface
is required to be isomorphic to a (closed) flat surface, our
method does not constrain the surface topology, making
the solution particularly suitable for industrial applications.
To show the effectiveness of our approach, we propose
experiments, both simulated and with real hardware, that
highlight the generalisation capabilities of learned policies
on different surfaces, with focus on the industrial application
of polishing.

II. PRELIMINARIES

A triangulated mesh is a discrete representation of a
surface, composed of vertices and faces that form triangles.
Formally, a triangulated mesh M can be regarded as a
connected graph of nv vertices, described by the set V ,
connected by edges E which will constitute nf triangular
faces, described by the set F . A mesh can be regarded
as piecewise-linear approximation of a continuous surface,
providing an efficient, yet flexible, representation for com-
putational purposes.

In geometry, a differential manifold M is a locally Eu-
clidean topological space where calculus can be applied.
Smooth surfaces S, such as a sphere or a torus, are 2-
dimensional differentiable manifolds which provide the con-
cept of curved plane, and over which we can perform precise



geometric computation.
With this work, we seek establishing an analogy that

enables the use of discrete surface representations M to
perform operations defined for smooth surfaces S. For this
reason, we must constraint M to be manifold, i.e., any edge
in the polygonal mesh must be shared by at most two faces,
and M must have a consistent normal vector field to the be
orientable [14].

III. PROPOSED APPROACH

A. Differential operators on discrete manifolds

In this section, we extend the concept of some differential
operators to discrete manifolds by first recalling their
intuitive definition for bi-dimensional surfaces S embedded
in R3, and the corresponding concept for discretised surfaces
M. Readers may refer to [14] for an in-depth treatment of
differential geometry.

1) Geodesics: For any two points x1,x2 ∈M , the curve
γ : [0, s] ⊂ R → M , parameterised by arc length, with
γ(0) = x1 and γ(s) = x2, is a geodetic if it minimises
the distance along the manifold between these points. In
the context of Riemannian geometry, where M is smooth,
the geodesic γ is always defined, unique, and represents a
smooth curve of length |γ|= s, with |·| being the Riemannian
distance.

For discrete geometry, particularly polygonal meshes,
different algorithms have been proposed to compute the
geodesics between arbitrary points on a surface [15]–[17]. In
a meshM, the geodesic between two points, m1,m2 ∈M,
is a polyline modelled by a set of nγ ordered segments:

γ =
{
p1p2, . . . ,pnγ−1pnγ

}
, (1)

where p1 = m1, pnγ
= m2, and each pi ∈M.

2) Tangent space: Let M be an n-manifold, given any
point x ∈ M and a suitable local parameterisation ϕ : U ⊂
Rn →M , such that ϕ(ux) = x, then a vector basis for the
tangent space TxM at the point x, as in [18], is provided
by {

∂ϕ

∂u1

∣∣∣∣
ux

, . . . ,
∂ϕ

∂un

∣∣∣∣
ux

}
.

In the case of smooth surfaces S embedded in R3, TxS
simplifies to the 2-dimensional plane in R3 that is tangent
to S at the point x ∈ S.

We can generalise this definition of the tangent plane
for discrete manifolds. Let m ∈ M be a point lying in
a triangular face Tm, then the corresponding tangent space
TmM is the plane that contains this triangle.

3) Parallel transport: The parallel transport is an isomet-
ric transformation that enables the expression of a vector
v ∈ Tx1

M in the tangent plane Tx2
M of another point. The

general derivation is tied with the concept of parallel vector
fields on geodesic curves, but in the case of smooth surfaces
S embedded in R3, the parallel transport turns out to be a
rotation transformation.

As discussed in Sec. III-A.1, we are able to construct the
geodesic curve γ between any two points m1,m2 ∈ M. It

follows that the tangent vectors at the curve in m1 and m2

are respectively

w1 =
p1p2

∥p1p2∥
, w2 =

pnγ−1pnγ

∥pnγ−1pnγ
∥
.

Given the tangent vectors w1 and w2, the parallel transport
of a vector v ∈ Tm1M onto Tm2M is defined as

Pm1→m2
M(v) : Tm1

M→ Tm2
M := Rv, (2)

where R ∈ R3×3 is the unique rotation matrix that rotates
w1 to w2.

4) Logarithmic map: The logarithmic map is a differential
operator which enables the expression of a point x2 ∈ M
within the tangent space Tx1

M of x1 ∈M . Such projection
yields a vector v ∈ Tx1

M whose direction is provided by
the tangent vector γ̇(0) of the geodesic γ connecting x1 to
x2, and with magnitude equal to the length s of the geodesic
itself.

By applying this definition on discrete manifolds, and
recalling the definition (1) of the geodesic on a mesh, it
follows that the logarithmic map of m2 in the tangent space
of m1, denoted with Logm1

(m2) :M→ Tm1M⊂ R3, is

Logm1
(m2) :=

p1p2

∥p1p2∥

nγ−1∑
i=1

∥pipi+1∥. (3)

5) Exponential map: The exponential mapping can be
regarded as the inverse operation of the logarithmic map.
Given a vector v ∈ Tx1M defined in the tangent space
of x1 ∈ M , such mapping yields a point x2 ∈ M such
that the corresponding geodesic curve γ has length ∥v∥
and its initial velocity γ̇(0) is directed as v. In the case
of smooth manifolds, one can obtain the geodesic curve by
integrating a second order differential equation (ODEs) [19],
thus retrieving y.

While dealing with discrete manifolds, however, such
definition cannot be applied. In fact, the ODEs to inte-
grate depend on the Christoffel symbols whose values are
undefined at non-differentiable points such as vertices and
edges of the mesh. Still, by resorting to the intuitive
concept of the exponential map, we can retrieve a numerical
procedure, described in depth in Algorithm 1, to evaluate the
corresponding value.

The exponential map Expx(v) aims at laying off a line
of length |v| on the manifold M along the geodesic that
passes through x with direction v [14]. The achieve this
behavior, we propose an interative algorithm that, given an
initial vector v = v0 ∈ Tm0

M applied in m = m0 ∈ M,
computes m̂1 as the displacement of m0 along v0. If such
point lies within the face T0 ⊂ M where m0 was located,
then it means that we found the actual projection of the vector
in the mesh, thus the point corresponding to Expm(v). If m̂1

falls outside of T0, it means that the exponential mapping
would be outside of such face; for this reason, we displace
m0 by a vector ṽ0 which enables to reach the edge of T0
at point m1. Let T1 be the other unique triangular face that
shares the edge of T0 containing m1, we have to ensure



Algorithm 1 Exponential Map Approximation. E(T ) are the
edges of the triangle T , while nT is the triangle normal.
Input: m ∈M, v ∈ TmM

1: m0 ←m, v0 ← v
2: T0 ← triangle containing m0

3: k ← 0
4: while ∥vk∥> 0 do
5: m̂k+1 ←mk + vk

6: if m̂k+1 inside Tk then
7: return m̂k+1

8: end if
9: mk+1 ← intersection(mkm̂k+1, E(Tk))

10: Tk+1 ← adjacent face of Tk sharing mk+1

11: v∆
k ← Logmk

(mk+1) {Eq. (3)}
12: ṽk ← vk − v∆

k

13: νk ←
(
I3×3 − nTk+1

n⊤
Tk+1

)
ṽk

14: vk+1 = νk

∥νk∥∥ṽk∥
15: k ← k + 1
16: end while
Output: Expm(v)

that the vector v1 that will be used to displace m1, lies
in the plane of T1. To do so, we take the part of the vector
ṽ0 = v0−v∆

0 that has not been yet used for the displacement
of v0, and apply a norm-preserving projection on the plane
of T1. At this point, we can iterate the algorithm starting
from m1 and displacing along v1, until we reach a point
m̃k that lies within a face of the mesh.

B. Mesh Dynamic Movement Primitive (MeshDMP)

To encode cyclic demonstrations on a surfaces, we extend
the geometry-aware formulation of DMPs (G-DMPs) pro-
posed in [11] to periodic motions, and provide some insight
on how to enable skill generalisation to arbitrary meshes.
Note that we focus on periodic motions as they are common
in industrial automation, but one can start from the approach
in [12] and derive MeshDMP for point-to-point motions.

Periodic MeshDMPs consists of the following dynamic
evolving on a manifold:

∇zz = Ω
(
α
(
β Logy(g)− z

)
+T(y, z)f(ϕ)

)
,

ẏ = Ωz,

Ωϕ̇ = 1.

(4)

Here, y ∈ M represents the position state, z ∈ TyM
the (scaled) velocity, g ∈ M the centre of the periodic
motion, f : R → TyM the forcing function, ϕ ∈ R
the phase variable, Ω ∈ R+ a time scaling factor, and
α, β ∈ R+ coefficients associated to the linear dynamics.
Similarly to [9], we assume that f is parameterised locally
to the current state in the mesh manifold, thus an isometric
transformation T : M × TyM → R3×3 is required to
project the forcing term in the global reference frame which
is used to perform the numerical integration of (4). Note that
previous work [11], [12] do not include this transformation as
they consider smooth manifolds. As local frame, we propose

to use the one whose first basis vector î is aligned with the
current velocity z of the MeshDMP, the third basis k̂ normal
to the current face, and ĵ bi-normal to the other ones. The
corresponding transformation is formally defined as

T(y, z) =

[
z

∥z∥
ny ×

z

∥z∥
ny

]
. (5)

The forcing function f is encoded as a linear combination
of N Gaussian radial basis functions, i.e.,

f(ϕ) =

∑N
i=1 Ψi(ϕ)wi∑N
i=1 Ψi(ϕ)

r, (6)

wherein Ψi(ϕ) = exp (hi(cos(ϕ−ci)−1)), wi ∈ R3 are the
weights to be learned from the demonstration, and r ∈ R+ is
a scaling coefficient, that in this work we set to ∥Logy0

(g)∥,
with y0 the starting configuration of the MeshDMP.

To learn the weights in (6), we need a demonstration D,
i.e., a set of Ns samples

{
yk, ẏk,∇ẏk

ẏk

}Ns

k=1
. By appropri-

ately inverting (4), one can compute the desired forcing fd

at the different time-steps as

f
(w)
d,k =

∇ẏk
ẏk

Ω2
− α

(
β Logyk

(g)− ẏk

Ω

)
, (7)

fd,k = T−1
k f

(w)
d,k . (8)

Equation (7) is the common definition of the forcing term
for rhythmic DMPs that leads to a forcing term f

(w)
d,k defined

in the world reference frame. However, since we request the
forcing term fd,k to be defined locally to the demonstration,
in (8) we perform an appropriate change of basis by con-
sidering Tk = T(yk, ẏk). Finally, given the set of forcing
term F =

{
fd,k

}Ns

k=1
, one can simply solve a least-square

problem to obtain the desired set of weights wi of (6).
When learning on manifolds, we must ensure that the

different states lie on the corresponding geometrical entity,
i.e., yk ∈ M and ẏk,∇ẏk

ẏk ∈ Tyk
M. In practise,

to build D, we propose to acquire position and velocity
samples from the Cartesian space, i.e., to collect C ={
χk ∈ R3, χ̇k ∈ R3

}Ns

k=1
. We then retrieve yk by determin-

ing the closest point on the mesh M of the position χk,
and use a norm-preserving projection of χ̇k on the plane
Tyk
M to construct ẏk. Finally, given the sampling period

dt ∈ R+, the acceleration-like sample is built by numerically
computing the covariant derivative as

∇ẏk
ẏk =

Pyk+1→yk
(ẏk+1)− ẏk

dt
. (9)

IV. EXPERIMENTAL RESULTS

A. DMP learning and execution

To learn the forcing term of the MeshDMP (4), we
generate synthetic demonstrations on non-flat surfaces S
obtained as the graph of bi-variate functions f : R2 → R,
i.e., S is described as the image of the function Π(x, y) =
(x, y, f(x, y)) in the domain Θ = [ax, bx]× [ay, by]. Defined
a 2D differentiable curve η : R → R2, the demonstrations
D are obtained by sampling uniformly the tri-dimensional
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Fig. 1. (a) Demonstrated trajectory (orange) and path obtained by
MeshDMP (blue) after learning the forcing term. (b) Position trajectory of
the demonstration (dashed lines) and the one obtained through MeshDMP
integration (solid lines).
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Fig. 2. Execution of a MeshDMP learned on an 8-shaped trajectory on the
flat surfaces, then generalised to a low (a) and high (b) polygonal density
meshed torus, as well as on a simplified Stanford bunny (c).

curve ρ = Π ◦ η. The mesh M approximating the surface is
obtained by sampling S on a uniform grid in Θ.

An example of MeshDMP learning and execution is de-
picted in Fig. 1(a), where the demonstration consists of a
8-shaped trajectory projected on the graph of the function
f(x, y) = e−(x−1)2y2 − 0.5e−(x+1)2y2

. Figure 1(b) reports
the time-series plots of the Cartesian trajectories of both
demonstration and learned demonstration, which scores a
root mean-squared error 8 · 10−2m.

Even though there’s no formal way to asses the gener-
alisation capability, we trained a MeshDMP on a 8-shaped
trajectory, drawn in a flat surface, and then we integrate it on
2 surfaces with different topology, namely a torus, and the
Stanford bunny, Fig. 2, clearly showing the generalisation
of the proposed system in adapting to different meshes. We
can also observe from Fig. 2(b) that using a higher quality
mesh, leads to better performance of the algorithm since the
approximation error of M is lower w.r.t. the nominal shape.

B. Execution on real hardware

To further prove the effectiveness of the proposed algo-
rithm, we conducted an experiment simulating the wiping op-

Fig. 3. End-effector configurations while traversing the crest present in
the surface.

eration on industrial work-pieces; the video of the experiment
can be found at https://youtu.be/3Az6q5JfL94.

The proposed experiment is performed on a Kuka Iiwa14
polishing the front fender of a car, a piece with non-trivial
curvature that makes traditional robot programming and
LfD techniques hard to execute. Since MeshDMPs provide
trajectories in the surface domain, we choose as set-point
for the controller a reference system centred in the DMP-
provided position, and z axis pointing inward the object.

Our first experiment shows the effectiveness of
MeshDMPs in real-life scenarios, by learning an elliptical
pattern in a flat surface, that then is executed on the surface
of the fender. From a graphical user interface (GUI),
the user can specify the centre position, i.e., the centre
of the ellipse, and the initial position of the MeshDMP,
and internally the algorithm determines the proper initial
velocity and integrates the DMP for the requested time
amount, and with custom cycle period. By planning the
trajectory directly within the surface of the mesh, it follows
that the end-effector can easily adapt to steep curvature
changes in the mesh. An example is shown in Fig. 3, where
the robot smoothly follows the surface normal when passing
through the crest present in the fender.

The second experiment shows the trajectory generated by
a MeshDMP learned on a circular pattern that is integrated
while shifting the centre from gstart to gfinal with a constant
velocity, mimicking the human behaviour of polishing.

V. CONCLUSION

In this paper, we presented Mesh Dynamic Movement
Primitive (MeshDMP), an approach to learn and execute
motions on triangular meshes. MeshDMP treats the mesh as
a discrete Riemannian manifold to perform geometry-aware
learning and generalisation. To this end, we have defined
differential operators on the discrete manifold, namely the
logarithmic and exponential maps and the parallel transport.
These operators are then used to fit DMPs that encode the
motion on the manifold. We have also proposed an effective
strategy to generalise the learned motion to different mani-
folds, by accounting for the different curvature through an
isomorphic transformation which can be efficiently computed
at run-time. MeshDMP has been evaluated in simulation and
real experiments, where a robotic manipulator effectively
performs polishing on a car fender. Future work will in-
vestigate and evaluate the use of MeshDMPs in correctly
performing polishing and sanding operation in a industrial
scenario.

https://youtu.be/3Az6q5JfL94
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