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Abstract— Recent progress in robot manipulation can be
attributed to two developments: first, the application of novel
learning methods, and second, the use of expertly crafted
models. Consequently, merging these two developments seems
a promising path for further progress. However, this only
works if obtaining policies from learning and modeling possess
synergistic properties. We argue that this is not necessarily the
case. We discuss the reasons and suggest an alternative view of
what can accelerate progress in manipulation. We then recall
that this alternative view is already well-established in seminal
works in robotics and show, based on our own work, that this
view continues to produce advances in robotic manipulation.

I. INTRODUCTION

Learning-based and model-based approaches both produce
policies1, but their information source differs. Learning-
based approaches extract policies from data, whereas model-
based approaches rely on human ingenuity. We conjecture
that one of the main obstacles towards progress in robot
manipulation is not a policy’s information source but instead
the inherent structure of the policy, irrespective of how it is
obtained. If this is the case, merging learning and models
alone is unlikely to lead to fundamental advances.

We propose that the inherent limitation of existing ap-
proaches to robot manipulation stems from the fact that
they attempt to form the (almost) complete policy prior
to task execution. Instead, we argue, it is better to build
a preliminary policy template that captures the instance-
independent, general information required for robustness and
generality. Such a general policy template should represent
the strongest possible inductive bias for the problem class
while leaving those aspects of the policy unspecified that de-
pend on the specific problem instance. Of course, the general
policy template is insufficient; instance-specific information
is essential to complete it. We argue this completion should
be done during execution, based on the information obtained
directly from the problem instance itself.
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1Or plan, program, controller—the terminology varies by community.
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Fig. 1. The separation principle for in-hand manipulation. A general
policy template dictates object rotation. Instance-specific completion occurs
during execution: The soft hand’s compliance adapts the motion to handle
varying gravitational forces due to different wrist poses. Our two-stage
approach achieves 14.65 complete object rotations on average—over an
order of magnitude more than the current state-of-the-art learning-based
technique [1]. We achieve more with less: Our hand is unsensorized, while
the baseline uses custom tactile sensors. The videos are available at here.

Note that an extreme division into general policy template
and instance-specific completion is always present when a
feedback controller is running. However, in this extreme
division, the policy is already fully instantiated, i.e., the
policy represents an inductive bias that is overly specific.
To make progress in manipulation, it is necessary to find the
most appropriate, i.e., most specific inductive bias and a way
to augment this inductive bias with instance-specific details.

We empirically support the two-stage policy construc-
tion approach by describing its application to three ma-
nipulation problems. The first application is dexterous in-
hand manipulation, the second is long-horizon contact-rich
manipulation, and the third is a novel and general action
representation. We believe that the compelling and com-
prehensive evidence from real-world robotic manipulation
solutions provide strong support for our hypothesis, namely,
that the application of two-stage policy construction based
on strong inductive biases and instance-specific completion
enables advances in robotic manipulation.

https://www.youtube.com/playlist?list=PLb-CNILz7vmuibtWGZuNZc8cP_3aCdBB-


II. RELATED WORK

The idea of splitting task knowledge into general policy
templates and instance-specific completion is not new. Early
robotic systems embraced this separation out of necessity,
constrained by limited computational resources. Choi and
Latombe’s navigation system [2] exemplifies this structure:
“a prior model of the environment is available, but this
model is incomplete.” Their system “combines a planning
component [...] to plan a lesser-committed motion plan and
a reaction component that pilots the robot [...] through
the unexpected obstacles.” Robustness came not from full
knowledge but from deferring specificity to execution.

In manipulation, Lozano-Pérez, Mason, and Taylor [3]
observed that given an overarching plan “details of geometry
and [...] error characteristics [...] must [...] be constructed
anew for each task.” Their approach synthesizes compliant
motion from general geometric models and then adapts
them using task-specific error estimates. Mason [4] also
shows how physical interaction itself can fill in the specific
information, which “eliminate[s] uncertainty [...] by purely
mechanical means,” while Hogan [5] frames impedance
control as a way to express general task goals that adapt
fluidly during execution. For locomotion, Kajita et al. [6]
leveraged Model Predictive Control (MPC) with simplified
models that capture the task-relevant aspects of the full sys-
tem dynamics [7]. Instance-specific completion is achieved
by iteratively solving a constrained optimization problem.

These early systems achieved notable robustness in un-
structured environments not by relying on complete policies
but by separating general priors from online adaptation.
However, their general policies did not scale well to more
complex manipulation or long-horizon tasks. Hence, as com-
putational resources increased, more structured approaches
emerged. Model-based planning and TAMP [8], [9] enabled
symbolic and geometric reasoning but assumed complete
world models, producing policies (or plans) that are fully
instantiated and not adapted during execution.

Learning-based methods promise to avoid the dependency
on complete world information. However, they often intro-
duce a different form of over-commitment: Deep reinforce-
ment learning [10]–[12] relies on accurate simulators and
enormous computational resources, resulting in policies with
limited generalization. Similarly, learning from demonstra-
tion (LfD) [13], [14] tends to overfit to instance-specific
details [15], [16] in the learned policy rather than capturing
task-invariant structure and filling in the instance-specific
details later.

A principled separation between reusable priors and
execution-time completion enabled robustness in early
robotic manipulation systems. We believe this strategy must
be emphasized more in our attempts to advance robotic
manipulation. Rather than merging learning and models into
a single, static policy, we advocate for a two-stage process—
policy templates completed online—as a more reliable path
to generalization. We now demonstrate this principle through
three examples of contact-rich manipulation.

III. IN-HAND MANIPULATION

As a first example, we look at dexterous in-hand manip-
ulation. Forming complete policies of in-hand manipulation
a priori fails for several reasons. Firstly, accurate instance-
specific information like object properties, contact forces, or
disturbances are unknown before executing the manipulation.
Second, even if the information were present a priori, our
current contact dynamics models do not capture the com-
plexity of the real world. Furthermore, many policies are
built in simulation. Combining learning and model-based
approaches here will likely not lead to success because
they do not extract complementary information. Instead, they
would extract the same regularities already present in the
expertly crafted models in physics simulators.

A. Policy Splitting

Enabling Principle: The soft morphology of compliant
hands implicitly completes general policy templates during
execution. The ability of soft hands to store and release
energy in the hand’s deformation enables this online com-
pletion. By appropriately changing the hand’s morphology
via actuation, the hand can self-stabilize against distur-
bances [17]. The general policy template remains simple be-
cause the hand’s self-stabilization compensates for variability
in the execution and fills in instance-specific details.

General Policy Template: The general policy template
sequences local actuation primitives that achieve object ma-
nipulation while maximally leveraging the hand’s capabilities
for instance completion. Thereby, it sequences environmental
constraints while storing and releasing energy to improve
self-stabilization. Our policy templates are general yet simple
because they are based on kinematics and provide structure
for motion generation while not directly modeling object
interaction.

Instance Completion: Compliant hands passively shift our
general policy templates to the closest feasible instantiation
that fulfills physical constraints like attaining force equilibria
and energy minimization. Thereby, the compliant hardware
addresses low-level control aspects (e.g., adapting to the
object’s shape, balancing contact forces, and counteracting
external disturbances) such that the policy template can
ignore the complex contact dynamics and focus on task-level
information. The policy completion happens instantly in the
hardware and is not limited by the bandwidth of a controller.

B. Experimental Results

We built the RBO Hand 3 [18] with a dexterous and com-
pliant morphology to apply the two-stage policy construction
and achieved highly generalizable object manipulation across
many dimensions. For example, we showed that a single
open-loop general policy template adapts online to different
object geometries, object poses, and execution speeds [19]. In
the context of feedback control, we demonstrated that coarse,
linear actuations toward a goal in the hand’s sensor space
are sufficient for closing a control loop [20]. The compliant
hardware completes the coarse control during execution.
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Fig. 2. Environmental constraint-based policy templates capture task-
level structure that generalizes across object instances and scene variations
for different manipulation tasks. From a single human demonstration, the
policy infers a sequence of environmental constraints that abstract away
from instance-specific geometry and appearance. During execution, this
information is filled in for the specific object via contact feedback, enabling
robust performance across diverse object instances. Example videos for
the illustrated tasks are available here: insertion puzzles, door locks with
keys, drawers with handles, Functional Manipulation Benchmark [15],
FurnitureBench [16], and latch locks.

Fig. 1 illustrates another dimension of policy adaptation:
A general open-loop policy template for continuous object
rotation programmed in the Palm Up pose adapts to different
wrist orientations of a robotic arm. Each wrist orientation
represents a different problem instance, as each instance pol-
icy needs to counteract a different relative gravitational force.
We achieve 14.65 complete object rotations on average,
which is over an order of magnitude more than the state-of-
the-art learning-based method averaged over the same wrist
poses [1]. On top of this, our hand is entirely unsensorized
while Yang et al. [1] use custom tactile sensors and feedback
control. Note that we only evaluate our approach on one
object—Yang et al. [1] test on ten objects. Our results show
that the hand’s soft morphology completes the simple and
general policy templates with the specifics of various in-hand
manipulation tasks.

IV. LEARNING FROM DEMONSTRATION BASED ON
ENVIRONMENTAL CONSTRAINTS

Our second example examines the challenge of learning
long-horizon, contact-rich manipulation tasks from human
demonstrations. These tasks, as represented in the Functional
Manipulation Benchmark [15] and FurnitureBench [16],
combine free-space motion with forceful interactions and
require robust long-horizon sequencing.

Such tasks are complex due to uncertainty in percep-
tion, object geometry variations, and noisy control, all of
which can derail execution if not handled adaptively. Many
learning-based approaches overfit to instance-specific details,
replicating exact trajectories without capturing the under-
lying task structure. At the same time, fully specifying
task-solving policies a priori, whether manually or through
learned dynamics, is often infeasible. Key parameters like
insertion depth or rotation axes are not reliably observable
from vision alone, and execution is often disrupted by
slippage or misalignment.

A. Policy Splitting

Enabling Principle: Environmental constraints (ECs) [21]
govern how objects can be manipulated, for example, the
prismatic constraint of a drawer or the revolute constraint of
a door. These constraints abstract away from exact geometry
and instead capture structure common to all instances within
a category of objects. As such, they offer a compact repre-
sentation of task-relevant regularities that remain consistent
across different object instances.

General Policy Template: Rather than memorizing geo-
metric features, we encode the observed interaction during
demonstration into a hybrid automaton shaped by the task’s
ECs. Because this policy template is very compact, it can be
learned directly from a single demonstration [22], [23].

Instance Completion: At execution time, instance-specific
geometric information gets filled in through sensor feedback,
particularly from contact forces. The robot compliantly fol-
lows the expected EC while simultaneously estimating its
parameters, even if the object pose has shifted or it is a novel
object instance. Deviations, such as unexpected constraints,
are detected via contact monitoring and can trigger targeted
requests for human corrections, refining the policy for that
instance without requiring extensive retraining.

B. Experimental Results

Using ECs, we achieve high success rates (90%) on
two long-horizon contact-rich manipulation benchmarks:
the Functional Manipulation Benchmark [15] and Furni-
tureBench [16]. This result is accomplished with only a
single demonstration per task, whereas other methods typi-
cally require hundreds and still yield lower success. Beyond
benchmarks, the same method generalizes to diverse tasks,
including insertion puzzles, door locks with keys, drawers
with handles, and latch locks, as illustrated in Fig. 2.

These experiments demonstrate that EC-based policy tem-
plates capture task-invariant structure that generalizes across
object geometries and configurations [22], [23]. The resulting
policy templates remain compact yet expressive by abstract-
ing away from instance-specific motion, enabling effective
learning from a single demonstration. Compliant execution
and targeted human corrections further enable adaptation
to unmodeled variations and disturbances. As a result, the
system achieves robust generalization across a wide range of
real-world scenarios without requiring extensive retraining.

https://youtu.be/OCr8jL6aGB8
https://youtu.be/o-cVzkWZ5eQ
https://youtu.be/o-cVzkWZ5eQ
https://youtu.be/_DzOrSmDj6k
https://youtu.be/jKcnt9mV8qg
https://youtu.be/vUDWx0VYBUQ
https://youtu.be/4tRInadJXFo
https://youtu.be/jKcnt9mV8qg
https://youtu.be/vUDWx0VYBUQ
https://youtu.be/vUDWx0VYBUQ
https://youtu.be/OCr8jL6aGB8
https://youtu.be/o-cVzkWZ5eQ
https://youtu.be/_DzOrSmDj6k
https://youtu.be/_DzOrSmDj6k
https://youtu.be/4tRInadJXFo
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Fig. 3. AICON encodes task structure in policy templates by capturing
persistent regularities as recursive estimators and linking those regularities
using actively modulated interconnections. The AICON-ic policy template
for partially observable drawer-opening using a robot sensorized with an
RGB camera and force-torque inputs is shown on top. During execution,
the policy is completed online via state estimation from sensory signals.
Given these state estimates, actions are selected by following the gradient
of the overall policy template. Since both estimates and gradients adapt
continuously to feedback, the resulting behavior remains robust under
various disturbances, as illustrated at the bottom. Watch how the gradient
through the policy template adapts in real-time to disturbances here.

V. A GENERAL ACTION REPRESENTATION LEVERAGING
INSTANCE-SPECIFIC COMPLETION

In our third example, we consider the general challenge
of sequential manipulation in real-world settings, where
uncertainty and unexpected disturbances are the norm. Under
this uncertainty, even simple contact-rich tasks like drawer
opening can unfold in unpredictable ways.

Critical factors such as object geometry, friction, and
occlusions are often unknown and may change during ex-
ecution. This makes precomputing policies impractical and
renders both handcrafted and learned policies brittle when
deployed outside their design assumptions, whether those
stem from engineering foresight or training distributions. To
address this, we need a suitable representation that enables
the separation of general structure from instance-specific
details.

A. Policy Splitting

Enabling Principle: It is infeasible to enumerate all possi-
ble physical parameter combinations or disturbance scenarios
ahead of time. However, persistent regularities hold across
task instances, such as how force and motion interact or
how objects project into the image frame. By encoding these
structural relationships between relevant state variables we
can reason about how to act given instance-specific physical
parameters and unexpected events.

General Policy Template: Active InterCONnect
(AICON) [24], [25] encodes these regularities as a network
of actively interconnected estimators. Each estimator
models the temporal evolution of a state variable, while the
connections between them capture structural relationships
among several variables. These interconnections are active,
meaning their influence is modulated dynamically based on
the state estimates, allowing the same structure to adapt
flexibly to different task instances. As this dynamic network
reflects the structure of the task, it can also be used to
derive signals that represent the desired actions to achieve
goals simply by propagating gradients through the network.

Instance Completion: During execution, instance-specific
information is continuously integrated through sensory feed-
back. This refines both the estimators and their interconnec-
tions in real-time. Further, actions required to complete the
task can be derived from the network’s gradients that are
shaped by the current estimates and the regularities encoded
in the network’s structure. This allows the system to adapt
its behavior smoothly to instance-specific conditions and
disturbances without the need for discrete planned stages and
specifying trajectories.

B. Experimental Results
AICON-based behavior exhibits strong robustness by

adapting continuously to sensory feedback. The system
maintains accuracy across varying objects, lighting, and
viewpoints in perception tasks such as kinematic structure
estimation [26] or object segmentation [27]. More critically,
the control behavior emerging from the system’s gradients
shows robustness to sensory noise, model uncertainty, and
various unmodeled disturbances [25].

For instance, in a real-world drawer-opening task using
only a wrist-mounted RGB camera and a force-torque sen-
sor in Fig. 3, AICON enables successful execution despite
challenges such as varying drawer poses, disturbance forces,
grasp errors, and various sensor disturbances. As a result,
it outperforms planning-based methods in success rate and
robustness under uncertainty and disturbances [25].

Beyond robotics, AICON’s ability to adaptively complete
the gaps for a specific instance has proven valuable for
biological modeling. For example, it has been used to model
aspects of human vision beyond previously explored param-
eter ranges [24] and has generalized effectively to unseen
real-world video stimuli [28].

VI. CALL TO ACTION

We argued that progress in robotic manipulation depends
less on whether policies are learned, engineered, or both but
more on how they are structured. Based on our previous
research, as well as seminal works [2]–[7], we advocate
for a two-stage policy construction process that separates
general, task-invariant structure from instance-specific de-
tails. Strong inductive biases capture this general structure,
while instance-specific properties complete the remaining
information during execution. Whether learning-based or
model-based methods are used in this process should be
guided by the characteristics of the task to be solved.

https://youtu.be/mM3KM9Zi5l4
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