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Abstract— This study addresses an occluded grasping prob-
lem that requires physical interactions between a robot and
an environment to grasp an object. A simple parallel gripper
has the limitation of its dexterity. For instance, the gripper
sometimes cannot grasp a flat box on a table due to the
actuation limit of the gripper. However, even with the simple
gripper, the robot can grasp the box by manipulating its
pose by leveraging extrinsic contact with the environment,
such as a vertical wall. Indeed, several previous works have
discussed similar problems, such work assumes a short wall
for manipulation. This assumption may not always be satisfied.
If the wall that makes physical interactions with the robot
is too large or too tall, the robot cannot grasp the object
even after manipulating the pose. In that case, the robot
is required to combine different types of actions. Then, in
this work, we consider a hierarchical reinforcement learning
framework to tackle this long-horizon manipulation problem.
We adopt Q-learning to train the high-level policy, and this
policy chooses the type of action that renders us the highest
reward. Then, the selected low-level skill samples an actual
robot action in a continuous space. During the training phase
of the skills, we apply domain randomization so that the skills
have generalizability.

I. INTRODUCTION

Robotic grasping is one of the fundamental tasks and is
important to address. Typically, when the robot picks and
places an object in another location or the robot performs
further manipulation, such as robotic insertion, the robot
needs to grasp the object [1]–[5]. Whether the object can be
grasped or not can depend on the object pose. For instance,
when grasping a flat box on a table (as shown in Fig. 1),
the robot may fail due to the gripper’s actuation limits. In
this work, we address such an ”Occluded grasping” problem
[6], [7], which deals with grasping an object whose primary
grasp configurations are occluded.

We can consider deploying more dexterous grippers to
the robot, such as multi-finger hands [8], [9], to tackle this
problem. However, such grippers generally involve complex
structures, making sustainable deployment difficult due to
difficulty in maintenance and simply its fabrication cost.
Then, in this work, we discuss enhancing the dexterity and
grasping the object of a simple parallel gripper by leveraging
extrinsic contact with an environment.

Although some prior works address similar problems [2],
[6], [10], [11], they implicitly assume a desirable environ-
ment, where the robot can grasp the object after pivoting
motion as shown in Fig. 1. In this work, we consider an
undesirable environment; the grasping configurations are
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Fig. 1. The problem description. In this work, we address an occluded
grasping problem on undesirable walls. Previous works implicitly assume
desirable walls, where the robot can grasp an object after pivoting. However,
if the wall is too large or too tall, the robot cannot grasp even after pivoting.
To deal with this problem, we consider combining pivoting actions and
pushing actions to make the object graspable even on undesirable walls.

still occluded even after pivoting the object. In such an
environment, the robot needs to combine different types of
actions in addition to pivoting to grasp the object.

The main difficulties of this problem lie in 1) handling
complex physical interactions, 2) switching different types
of actions automatically, 3) changing the contact location
on the object, and 4) achieving generalized performance
across various objects. To address this problem, we propose
a hierarchical reinforcement learning framework.

This framework possesses high-level policy and low-level
skills. The high-level policy decides which skill to choose
and the low-level skills generate actual robot actions. We
consider three types of robot actions to deal with the oc-
cluded grasping problem, pivoting, pushing, and grasping.
Each low-level skill corresponds to these robot actions. Since
pivoting involves complex physical interactions, we apply
domain randomization during training to improve robustness
and generalizability. We also employ Conditional Variational
Autoencoder (CVAE) to infer the contact location to success-
fully execute actions from the low-level skills. We would like
to highlight that our framework does not require any human
demonstrations.

Finally, we verify the effectiveness of our framework by
conducting numerical simulations and physical experiments.
The results of numerical simulations indicate that our frame-
work achieves the highest success rate of task completion
compared to other baselines. Besides, our framework requires
fewer training epochs for training due to the hierarchical



Fig. 2. The overview of our hierarchical reinforcement learning framework
for occluded grasping tasks. The high-level policy decides which low-level
skill to use based on the object pose and subtask completions. Then, the
selected low-level skill generates a robot action. To guide the robot to an
appropriate contact location to successfully execute the low-level skill, we
adopt CVAE. The contact locations are collected through successful rollouts
of the low-level skills and we do not need human demonstrations. The CVAE
is conditioned on the skill ID and object point clouds, so that the CVAE can
infer the contact location according to the object and the skill. The robot
moves to the contact location inferred by the CVAE first, then the robot
executes the action from the low-level skill.

structure. For physical experiments, we aim to do zero-shot
sim-to-real transfer of the trained high-level and low-level
policy. In this paper, we present a preliminary result that a
robot executes pivoting, pushing, and grasping actions on a
box.

II. PROBLEM FORMULATION

In this section, we address the problem statement we focus
in this work, and introduce the fundamentals of reinforce-
ment learning.

A. Problem Statement

In this work, we mainly focus on an occluded grasping
problem on undesirable walls and a hierarchical reinforce-
ment framework to decompose such a long-horizon non-
prehensile manipulation problem into simple subproblems to
easily handle the original problem. We handle an object on a
flat surface like a table that is ungraspable at the initial state
and a fixed proximity wall perpendicular to the surface. We
assume the lateral direction of the wall is aligned with y-
axis in the Cartesian coordinate. The undesirable walls are
tall, i.e., the object does not become graspable even after the
robot pivots the object.

To complete the manipulation task, we aim to learn a
policy to manipulate the pose of the object by leveraging
extrinsic contact between the wall and the object to make it
graspable. The size and position of the wall vary, and our
policy automatically manipulates the object by adapting to
the different walls. We also aim to consider generalizing the
policy to various objects with zero-shot sim-to-real transfer.

B. Fundamentals of Reinforcement Learning

An environment for reinforcement learning is described
as a Markov Decision Process (MDP). MDP is a sequential
stochastic process and can be modeled as a tuple (S,A,P, r)
where S denotes the state space, A denotes the action space,
P(st+1|st, at) denotes the transition probability, which de-
scribes the probability from the current state st to the next
state st+1 with the action at, and r denotes the reward. The

primary objective of reinforcement learning is to find a policy
π(a|s) to maximize the expected return E[

∑∞
t=0 γ

trt] where
γ is a discount factor.

III. METHODOLOGY

In this section, we introduce the proposed framework to
deal with this occluded grasping problem. The hierarchical
reinforcement learning framework comprises a high-level
policy to decide which skill to use based on the observation
and a selected low-level skill to generate an action for
the robot. Before executing robot actions from the low-
level skills, we guide the robot to a desired endeffector
pose corresponding to the skills by following a linearly
interpolated trajectory. To infer the desired endeffector pose
for pivoting and pushing, we adopt a CVAE conditioned on
object point clouds and the skill ID. Since our main focus
is not inferring grasp candidates, we calculate the desired
grasping pose by using object sizes. In this work, we use
Euler angles as orientations of both objects and the robot.
Figure 2 summarizes the overall proposed framework. We
further discuss the details of the framework in the following
subsections.

A. High-level Policy

The role of the high-level policy is to choose an appro-
priate skill based on the observation, thus, the action space
is discrete. Hence, we employ Deep Q Network (DQN) [12]
to train the high-level policy. The action ahigh ∈ {0, 1, 2}
corresponds to the low-level skill ID where 0 is pivoting,
1 is pushing, and 2 is grasping. The observations are the
position and orientation of the object xobj ∈ R3, oobj ∈ R3,
the lateral length of the wall l ∈ R, and subtask (pivoting and
pushing) completion flags vpivot ∈ {0, 1}, vpush ∈ {0, 1}.
For pivoting, the task completion criterion is the same as
that in the reward calculation we mentioned later in this
section. For pushing, if the distance from the current object
position xobj ∈ R3 to the goal position xgoal ∈ R3 is less
than 0.05 [m], we regard this as completion. We calculate
xgoal using l so that the object becomes graspable. The high-
level policy can adapt to different goal positions by taking l
as an observation.

We construct the following reward to train the policy

r = −∥xobj − xgoal∥2 + rbonus + rpenalty + rdone

rbonus =

{
0.05 if d ≤ 5π

180

0 otherwise

rpenalty =

{
−0.02 if ahigh = 0 and d ≤ 5π

180

0 otherwise

rdone =

{
0.05 if grasping

0 otherwise

(1)

where d ∈ R denotes the distance between the current object
rotation matrix R ∈ R3×3 and the rotation matrix when the
object orientation is perpendicular to the table Rperp ∈ R3×3,



d = cos−1( 12 (tr(RperpR
⊤) − 1)). When d = 0, the object

stands on the table, hence the robot completes the pivoting
task. We assign a buffer of 5 [deg] for a pivoting success
criterion and use this criterion to feed the bonus rbonus
and penalty rpenalty to the high-level agent. When the robot
succeeds in pivoting an object, the high-level policy receives
a bonus reward of 0.05, however, if the high-level agent
chooses a pivoting action of 0, we feed a penalty of −0.02
to the high-level agent. Although the actual values of the
bonus and the penalty need not to be fixed, we indicate that
adding such bonus and penalty terms accelerates the training
procedure of the high-level policy. We feed the done reward
of 0.05 to the agent when succeeding in grasping the object.

B. Low-level Skill

The lower-level skills generate an actual robot action
arobot. In this work, we consider the following three skills:
pivoting, pushing, and grasping.

For the pivoting skill, we handle a continuous action
space to complete a complex contact-rich manipulation task.
We employ Soft Actor-Critic (SAC) [13] and design the
following reward to train the pivoting skill.

rpivot =
π

2
− d (2)

The observations for this skill are the position and orientation
of the endeffector xeef ∈ R3, oeef ∈ R3, and the external
contact force fext ∈ R6. The pivoting skill generates an
action of an endeffector velocity in the Cartesian space and
we do not consider any rotation of the endeffector during
the pivoting task. Thus, the action from the pivoting skill
apivot ∈ R3 should be in a three dimensional space. To
acquire the generalizability, we apply domain randomization.
We add a zero-mean Gaussian noise N (0, 0.2I) to fext, xeef ,
and oeef .

For pushing and grasping, we utilize hand-crafted skills
due to the simplicity of tasks. The pushing skill feeds a con-
stant action of the endeffector velocity apush = [0,−0.005, 0]
to the robot and the robot pushes the object after moving to
the contact location inferred by CVAE. The grasping skill
feeds a constant action of the endeffector velocity agrasp =
[0, 0,−0.01]. When the robot grasps the object, the robot
first moves above the grasp location estimated by CVAE,
then gradually approaches to the object to grasp with agrasp.

C. Conditional Variational Autoencoder

To estimate the desired contact location for execution of
each skill, we adopt CVAE. We feed an object point cloud
and a skill ID provided as conditions, and feed desired
contact locations as data to train CVAE. The desired contact
locations are collected by the successful rollouts of the skills.
When we run CVAE online, the point cloud is provided by a
depth camera and the skill ID is provided by the high-level
agent. When we train CVAE, we add a zero-mean Gaussian
noise N (0, 0.003I) to the object point cloud to simulate the
noise and acquire robustness.

IV. EXPERIMENTS

In this section, we conduct numerical simulations and
physical experiments to verify the effectiveness of the pro-
posed framework.

A. Numerical Simulation

To begin with, we conduct numerical simulations to verify
the effectiveness of our proposed framework. As mentioned
in Section III, we consider an environment where there is
an object and a fixed wall, and the fixed wall is undesirable.
For the manipulated object, we consider different sizes of
boxes. To evaluate the performance, we adopt the following
baseline methods for comparisons.

• SAC [13]: This is the most basic approach that does not
have any skills and contact location estimation modules.

• Proposed w/o CVAE: This approach uses the same
architecture of the proposed method without CVAE.

• Proposed w/o skills: This approach uses a SAC-based
framework to obtain a continuous action. The robot
randomly picks up a contact location from the outputs
of the CVAE.

• HACMAN [14]: This method is named Hybrid Actor-
Critic Maps for Non-prehensile Manipulation (HAC-
MAN). HACMAN has a discrete-continuous action
space to manipulate an object to a desired pose without
grasping. In this framework, a point cloud of an object
is the observation. HACMAN firstly chooses a contact
location on an object by choosing one of the points
in a point cloud, then executes the continuous poking
action to manipulate the object pose calculated by per-
point flow from the current pose to the goal pose. The
main difference from ours is HACMAN does not handle
manipulation with extrinsic contacts. We examine how
this affects the performance for manipulating an object
to the graspable (goal) pose.

• HACMAN++ [15]: This approach is an extension of
HACMAN, which integrates action primitives into the
original framework. We apply the pivoting, pushing,
and grasping primitives to this framework for a fair
comparison.

• Ungraspable [6]: This approach leverages extrinsic dex-
terity to grasp an ungraspable object. The extrinsic dex-
terity is an emergent behavior of the robot (not explicitly
designed) and the robot tilts or pivots (not including
pushing actions) the object to make it graspable. This
work implicitly assumes a desirable environment for
manipulation, thus we aim to verify the performance
in an undesirable environment.

We train both the high-level policy and the low-level
pivoting skill using the implementations from RLkit with
a batch size of 256 for the high-level agent and 4096
for the low-level pivoting skill. The CVAE consists of an
encoder with two-layer ReLU networks with 512 units, a
dropout layer, and a decoder with the same architecture as the
encoder. The batch size is 256 and the learning rate is 10−4.
We use 3,500 contact locations and object point clouds for



Fig. 3. An example of a successful action sequence of the robot in MuJoCo
simulation. The proposed framework can manipulate the object to the
graspable pose by combining pivoting, pushing, and grasping actions.

Fig. 4. Reward profile for training of the high-level agent. The proposed
framework efficiently learns the appropriate action compared with the other
baselines and achieves the highest reward. For HACMAN, HACMAN++,
and Ungraspable, the definition of the reward itself is different, and we do
not plot in this figure for a fair comparison.

pivoting and pushing to train the CVAE, and run 1,000,000
steps to train.

For simulation settings, we use a 0.05×0.05×0.015 [m3]
box for a manipulated object and vary the size of object to
examine the generalizability of the proposed framework and
baselines. The range is sizex ∈ [0.04 [m], 0.06 [m]], sizey ∈
[0.04 [m], 0.06 [m]]. We also vary the wall lateral length to
verify whether the proposed framework can adapt to different
environments. In this work, we only consider task success
rate as an evaluation metric. We allow the high-level policy
to choose the skills within 15 trials and if the robot completes
the occluded grasping task, we regard this as success. We run
the proposed framework and the baselines 10 times. Figure
3 depicts the successful action sequence in the simulation
environment. We execute the proposed framework and the
baselines on desirable and undesirable walls to demonstrate
the effectiveness of the proposed method.

Table. I exhibits the simulation results. Note that for
desirable walls, we regard success if the robot pivots the
object because the pose becomes graspable. We observe that
all baselines demonstrate high success rates on desirable
walls. However, on undesirable walls, the performance of all
baselines degrades significantly. The reason is that without
skills or contact location estimator, finding an appropriate
contact location and an effective action to complete the task
is difficult. The performance of HACMAN and HACMAN++
also becomes worse. Since these baselines require a perfect

Table I. Success rates on desirable and undesirable walls

Desirable Undesirable
SAC 80% 0%

Proposed w/o CVAE 80% 0%
Proposed w/o skills 70% 0%

HACMAN 0% 0%
HACMAN++ 70% 0%
Ungraspable 100% 0%

Proposed 100% 100%

Fig. 5. An example of a manipulation scenario of physical experiments. The
proposed framework realizes sim-to-real transfer in pivoting, pushing, and
grasping.

object point cloud and the point cloud observation should
be updated at each step, the robot cannot execute a long-
horizon action. Based on these reasons, these frameworks get
worse. When the robot executes the Ungraspable framework,
the robot tends to grasp the object after pivoting the object,
though the robot motion is emergent behavior and we do not
explicitly design the . Hence, when the wall becomes tall, the
robot fails to grasp the object. These results demonstrate the
effectiveness of our framework, particularly in undesirable
environments.

We also analyze the reward profile of the proposed frame-
work and ablations. As shown in Fig. 4, the reward of
our framework quickly increases and maintains the highest
reward compared to other ablations. For other baselines such
as HACMAN, HACMAN++, and Ungraspable, we do not
make comparisons since the reward is different.

B. Physical Experiments

We also conduct physical experiments in addition to
numerical simulations. In these experiments, we aim for sim-
to-real zero-shot transfer of the trained policy. We use an
RGB-D camera to obtain an object point cloud and apply
a color-based filter to segment the point cloud. To realize
this, we cover the environment with black curtains. We also
use AprilTag [16] to estimate the object pose. We adopt a
6-DoF robotic manipulator with a two-finger parallel gripper
that makes it difficult to grasp a large flat object without
manipulating its pose.

Figure 5 displays an example of a manipulation scenario
that the robot manipulates a box and grasps the box. Al-
though we still use a box object, the shape and the weight of
the box are out of distribution. The physical experiments are
currently ongoing and this is a preliminary result, however,
we plan to apply our framework to different kinds of objects
such as bottles for further verifications of generalizability.

V. CONCLUSION
In this study, we present a hierarchical reinforcement

learning framework for occluded grasping problems on
undesirable walls. The proposed framework performs well
particularly in undesirable environments compared with other
baselines even though the task comprises complex physical
interactions between the environment and the robot.

As future work, we plan to further verify the generalization
performance on the real robot.
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