
In-Hand Manipulation with Enforced Grasp
Stability for Contact-Rich Tasks

Yifei Chen∗, Shihan Lu∗, Haoxuan Zhang, and Kevin M. Lynch

Abstract—Recent advances in dexterous in-hand manipulation
have demonstrated impressive object reorientation capabilities,
yet often rely on palm support or fingertip lifting without
achieving truly stable grasps. Inspired by the role of rich fingertip
force-torque sensing in human manipulation, we propose to
integrate force-torque measurements into the observation space
of reinforcement learning (RL) policies for robotic in-hand
manipulation. To further guide the policy in utilizing contact
information, we introduce a force-closure-based reward that
explicitly encourages grasp stability during training. We validate
our approach on a simulated cube reorientation task using a
downward-facing multi-fingered robotic hand, comparing policies
trained with and without force/torque observations and grasp
stability rewards. Preliminary results suggest that incorporating
force-torque sensing and force-closure evaluation improves grasp
stability, facilitates smoother in-hand rotations, and accelerates
early training progress. These findings highlight the potential
of embedding physical grasp constraints into policy learning,
though further experiments are needed to fully assess robustness
and generalization.

Index Terms—Dexterous manipulation, grasp stability, force
closure.

I. INTRODUCTION

In-hand dexterous manipulation has made impressive
progress in recent years, enabling robotic hands to reorient ob-
jects such as cubes with high levels of flexibility and skill [1]–
[3]. However, a common characteristic shared by many of
these demonstrations is the reliance on either palm support or
fingertip lifting to stabilize the object during manipulation [4],
[5]. While effective for controlled environments, these setups
often lack a truly stable grasp, meaning the object is not
securely enclosed by fingers but instead precariously balanced.
As a result, when subjected to unexpected external contacts or
disturbances, the grasp can easily fail, causing the object to
slip or fall.

In contrast, when humans perform in-hand manipulation,
they routinely maintain a stable grasp even while external
forces act on the object [6]. A key enabler of this robustness
is the continuous perception of contacts exerted on the object
through the force and torque sensing at the fingertips, allowing
adaptive finger-gait adjustments to maintain secure contact [7].
Compared to other sensing modalities such as visual and tactile
feedback (i.e. vision-based tactile sensing, or called tactile
images [8]), force-torque information between the object and
robotic hand’s fingertips offers compact, interpretable mea-
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surements that correlate strongly with grasp stability, making
it an ideal representation for maintaining robust grasps.

Despite the importance of fingertip force-torque sensing in
human in-hand manipulation, existing robotic manipulation
studies, specially those through Reinforcement-Learning (RL)
for finger-gait control, have rarely leveraged this biological
insight. Instead, prior work on model-free RL methods for
complex in-hand manipulation tasks has predominantly relied
on vision, tactile images, or indirect joint-torque measurements
as input observations when operating upward or downward-
facing multi-fingered hands, leaving the grasping vulnerable
to dynamic uncertainty and external contacts [9], [10]. For
example, using visual observation, Chen et al. [9] utilized
teacher-student distillation to transfer policies trained with
privileged simulation data to policies in the real world. Sievers
et al. [10] explored purely tactile-based policies using joint
torque feedback in the robotic hand controller, showing that
joint-level contact information can enable surprisingly robust
manipulation without any vision. However, none of these
works have systematically investigated how fingertip-level
force-torque observations can contribute to grasp stability in
dynamic, contact-rich environments.

We propose to directly integrate force-torque information at
robotic fingertips into the observation space of the RL poli-
cies for in-hand manipulation. To explicitly encourage grasp
stability during the policy training with newly added force-
torque data at fingertips, we also introduce a force-closure
evaluation metric as part of the reward function, guiding the
policy to not only accomplish the task but also maintain a
mechanically stable grasp throughout the interaction. Force
closure, a fundamental concept in grasp analysis, refers to
a grasp configuration where the fingers can resist arbitrary
external wrenches through internal forces [11]. Achieving
force closure ensures that the object remains securely grasped,
irrespective of perturbations, and is essential for real-world
robust manipulation. Our ultimate goal is to enhance the grasp
stability of the learned policies, enabling them to resist external
wrenches while performing dexterous reorientation tasks, such
as twisting on/off a jar or using a screwdriver.

Our work aims to bridge this gap by embedding physical
grasp constraints into the RL pipeline for in-hand manipula-
tion. By leveraging force-torque feedback and force-closure
evaluation, we seek to train policies that achieve more sta-
ble, reliable, and physically grounded manipulation behaviors,
laying the foundation for future capabilities where robots can
perform dexterous in-hand tasks under external disturbances.
As an initial effort toward this goal, we focus on in-hand object



TABLE I
OBSERVATION SPACE COMPOSITION

Name Notation

Joint angles q ∈ Rn

Joint errors eq = qcmd − q
Force/torque sensor values Ftip ∈ R6×N

Last action (previous command) aprev ∈ Rn

Cube pose and orientation pcube ∈ R3, Rcube ∈ SO(3)
Cube linear and angular velocities (vcube, ωcube) ∈ R6

Contact positions and contact forces (pcontact, fcontact)

reorientation using a downward-facing multi-fingered robotic
hand as our testing platform, where the robotic hand has to
address the contact uncertainty introduced by object’s gravity.

II. METHOD

A. Task and Environment Setup

The objective is to enable a palm-down robotic hand to
grasp a cube and rotate it around its Z-axis as much as possible
without dropping it. The task is implemented in the MuJoCo
simulator, using a rigid multi-fingered robotic hand (Allegro
Hand V4) equipped with 6D force/torque sensors embedded
between the fingertip and the last link. Prior work suggests
that the initial state of each episode is important for agent to
get start with the learning [9], [10], so we deliberately set the
initial state of the scene with a relative close grasp and set
starting period with zero gravity to allow the agent to have
time to react.

B. Observation and Action Spaces

1) Observations: In the Mujoco simulation, we obtain rich
information, including the robot states, object (cube) states,
and contact force/torque between the object and fingertips. The
policy receives all states above as observations during training,
as shown in Table I.

To improve temporal coherence and stability, the observa-
tions are stacked over 5 frames before being fed into the policy
network.

2) Actions: The action space consists of desired joint
positions qtarget ∈ Rn, where n = 16. Actions are executed
through a joint-space PID controller, where the policy outputs
target joint positions, and the PID controller handles low-level
torque control to track these targets.

C. Reward Design

The overall reward is composed of a basic task reward and
a force-closure related grasp stability reward. The basic task
reward includes:

1) Rotation reward: We apply a positive reward propor-
tional to the cube’s incremental rotation around the Z-
axis between steps.

2) Drop penalty: A large negative reward (-100) is applied
if the cube is dropped, and the episode is terminated
immediately.

3) Translation and other rotation penalties: Punishments are
applied if the cube undergoes significant translations or
rotations around axes other than the Z-axis, to encourage
controlled spinning.

The base task reward is formulated as follows:

Rbasic = λrotate∆θ − λdropdrop − λz|∆z|
− λplane|∆xy| − λrot(|∆ϕ|+ |∆ψ|) (1)

where each λ is reward weight coefficient corresponding to a
specific component.

In contrast to palm-supported manipulation, a single mistake
can easily break grasp closure and result in object dropping.
Exploration must balance risk (lifting fingers for regrasping)
and grasp stability, making the training prone to local minima
without careful design.

To enhance grasp stability during manipulation, we intro-
duce force-closure related reward to encourage the agent to
learn from the fingertip-level force/torque information:

1) Contact reward: We apply a positive reward proportional
to the number of fingers in contact with the object.
This encourages maintaining multiple active contacts to
increase stability.

2) Force-closure (FC) metric reward: We compute a grasp
quality score based on the grasp wrench matrix G,
constructed from the measured contacts, as the following
two steps:

First, based on the contact information, we build the can-
didate wrench matrix. For each contact, we generate a set of
candidate contact forces inside the discretized friction cone.
For each candidate force, we compute the associated wrench
(force and torque relative to the object’s center of mass). All
candidate wrenches are aggregated into a matrix G ∈ R6×N .
Second, we evaluate the grasp quality by performing SVD on
G to obtain singular values σ1 ≥ σ2 ≥ · · · ≥ σ6. The smallest
singular value σmin reflects the minimum resisted wrench
magnitude, which is later normalized into a FC score ∈ [0, 1]
[11], [12].

The final form of the overall reward is:

R = Rbasic + λcontact × contact count + λfc × FC score (2)

where λcontact and λfc are weights of corresponding contact-
related rewards.

D. RL Pipeline

We use the Soft Actor-Critic (SAC) algorithm [13] for
policy learning. The network uses a fully connected neural
networks for both actor and critic, with two hidden layers of
512 neurons each. We use 12 parallel simulation environments
to accelerate data collection. The training was conducted on a
laptop equipped with an Intel Core i7 CPU, an NVIDIA RTX
3060 Laptop GPU. Each policy was trained for approximately
2 million environment steps, requiring about 8 hours of wall-
clock time.
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Fig. 1. Average episode basic task reward versus training steps (in millions)
for benchmark policy and force-closure (FC) enhanced policy with additional
force/torque observations. The FC policy quickly outperforms the benchmark
in terms of average basic task reward, surpassing 600 reward by 0.5 millions
steps and converging around 850 reward. The benchmark slowly reaches under
100 reward over the entire training horizon. The shaded envelopes around the
curves denote the variability across runs.

III. RESULTS

A. Experimental Setup

We aim to evaluate the impact of force/torque sensing and
force-closure rewards on in-hand manipulation stability while
pursuing object orientation. In the preliminary experiment,
three settings are compared:

1) Baseline: No force/torque sensing; basic task reward.
2) Force/Torque Only: Force/torque observations added;

basic task reward.
3) Force/Torque + Force-Closure: Force/torque observa-

tions added, along with additional force-closure related
reward.

All policies are trained under identical conditions using
SAC. Evaluation focuses on two key metrics: (1) Episode
length—the time before object drop—indicating grasp sta-
bility, and (2) Accumulated rotation—the cumulative Z-axis
rotation achieved during an episode, representing in-hand
dexterity.

Policies are trained without environmental randomization.
During evaluation, we perform rollouts both with and without
initial state perturbations. Specifically, we introduce noise by
randomly perturbing the initial cube position (±10 mm) and
orientation (±5◦). Each policy is evaluated over 50 episodes,
with a maximum episode length of 10 seconds.

B. Experimental Results

As shown in Fig. 1, the episode’s average basic task reward
curves during training indicated that introducing force/torque
sensing and force-closure rewards improves episode duration
of the training compared to the baseline policy. It enabled the
agent to maintain more stable contact with the cube across
the episode and provides greater flexibility for exploration.
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Fig. 2. Evaluation results comparing different policies under both nominal
and randomized initializations. (A) Episode duration—the time until the cube
drops—demonstrates stability. (B) Effective accumulated rotation—measured
only when at least two fingers maintain contact with the cube—reflects in-hand
manipulation ability. Policies trained with force-closure rewards exhibited
better trade-off between stability and dexterity.

Additionally, policies incorporating FC rewards demonstrated
faster initial learning progress compared to the baseline policy,
achieving significant reward improvements at early stage of
the training. This suggested that embedding physical grasp
constraints into the learning process may accelerate policy
optimization toward more stable manipulation strategies.

During policy rollout (Fig. 2), when evaluating without
random initialization, the proposed FC policy showed signif-
icantly extended episode duration with a decreased effective
rotation angle, partially due to the dramatic spinning motions
observed in the baseline policy or policy without FC reward.
After adding initial state perturbations, FC policy continued to
achieve longer episode durations with only a minor reduction
on the effective rotation, compared to the policies without the
specific FC reward. However, it still achieved greater effective
rotation than the baseline policy.

Moreover, as the time lapse illustrated in Fig. 3, policies
trained with force-closure rewards exhibited more consistent
in-hand rotation behavior and fewer grasp failures, compared
to baseline policies that tended to spin the cube in the air,
merely pursuing larger angular changes but ignoring the grasp
closure.

It is important to note that these findings are based on
preliminary experiments. While promising trends are observed,
further evaluations, including additional randomization during
training and tests under external disturbances, are needed to
fully validate the generalization and robustness benefits of the
proposed method.

IV. DISCUSSION

Our preliminary experimental results suggest that incor-
porating force/torque information into the observation space
along with physics-informed contact rewards helps the agent
to better balance grasp stability and object reorientation ob-
jectives. While promising trends are observed, further ex-
periments and adjustments are still needed to reach solid
conclusions.



Fig. 3. Time-lapse comparison of manipulation behavior for different policies. Each row represents a different policy, while columns correspond to snapshots
at increasing time steps (400 ms apart). Policies trained with force closure rewards demonstrate significantly better grasp stability while rotating the cube. In
contrast, the baseline policy tends to spin the object in the air, leading to unstable grasps and object drops.

While evaluating the results, we observe that the baseline
policy used for comparison does not achieve ideal perfor-
mance. Our baseline reward function and environment setup
were designed to closely follow prior work from the TUM
AIDX Lab series [10], [14], [15]. However, differences in the
dexterous hand model, low-level joint controller, and initial
learning conditions likely contributed to deviations from the
originally reported results. This discrepancy suggests that
further reward tuning, controller calibration, and initialization
adjustments are necessary to establish a stronger benchmark
for fair comparison. It also reveals the sensitivity of the trained
policies in the absence of enforced grasp stability constraints.

Looking forward, future work will focus on applying exter-
nal disturbances to better evaluate the agent’s grasp stability
under challenging conditions. We also plan to investigate the
sim-to-real transfer performance of the proposed approach to
assess its practical applicability in the real world.
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