
Web2Grasp: Learning Functional Grasp
with Reconstructed HOI from Web Images

Hongyi Chen1∗, Yunchao Yao1∗, Yufei Ye2, Zhixuan Xu3, Homanga Bharadhwaj1,
Jiashun Wang1, Shubham Tulsiani1, Zackory Erickson1 and Jeffrey Ichnowski1

Abstract— Dexterous and functionally valid grasping is es-
sential for enabling multi-finger robotic hands to manipulate
objects effectively. However, most prior work either focuses
solely on power grasping, which simply involves holding an
object still, or relies on costly human-collected demonstrations
to teach robots how to grasp each object functionally. Instead,
we propose extracting human grasp information from internet
images which depict natural and functional object interactions,
thereby bypassing the need for curated human demonstrations.
Leveraging existing 3D reconstruction methods from RGB
images, we reconstruct hand-object interaction (HOI) meshes,
retarget the human hand to the ShadowHand robot, and
align the noisy object mesh with its accurate 3D shape. We
demonstrate that low-quality HOI data from web sources can
effectively train a functional grasping model. To further expand
the grasp dataset for seen and unseen objects, we utilize the
initially-trained grasping model with web data in IsaacGym
simulator to generate physically feasible grasps while preserv-
ing functionality. The simulator-augmented dataset boosts the
model’s success rate from 61.8% to 83.4%. We train the model
on 10 object categories and evaluate it on 9 unseen objects,
including challenging items such as syringes, pens, spray bottles,
and tongs, which are underrepresented in existing datasets.
Evaluation results in IsaacGym show a 6.7% improvement in
grasp success rates on unseen objects, and significantly higher
functionality ratings from human evaluators. Project website is
available at: https://web2grasp.github.io/.

I. INTRODUCTION

Functional grasping with dexterous robot hands, which
requires context-aware hand-object interactions, remains a
significant challenge in multi-finger manipulation. While
prior work has made substantial progress in dexterous grasp-
ing, many studies focus on generic power grasps, which
often apply nearly identical grasps to objects that require
diverse poses for effective operation [1–4]. These methods
commonly rely on force-closure estimation or reinforcement
learning approaches [5–7]. While learning functional affor-
dances from images and object shapes has been explored [8–
10], studies have shown that learning high-dimensional grasp
poses from such noisy data remains challenging and often
requires additional human demonstrations to fine-tune the
trained prior [9, 11, 12]. High-quality, yet expensive, human
demonstration datasets that account for the complexities of
diverse object geometries and functional constraints have
been developed [13–15], and these datasets are used to train
robots for functional grasping [16–18].

To avoid the time-consuming human annotation of grasps
across object categories, we turn to recent advances in
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hand-object pose estimation and interaction reconstruction
from RGB images [19–21]. These methods can reconstruct
human-object interactions (HOI) in the form of 3D represen-
tations [21–23], from images depicting how humans grasp
objects in functional ways. However, due to mutual occlu-
sion and the lack of annotated data, these existing models
are often not accurate, with reconstructed HOI exhibiting
excessive penetration or failing to make proper contact with
object meshes [21, 24]. This inaccuracy has hindered the
use of such data for training functional dexterous grasps.
Some prior works have attempted to replay reconstructed
3D data in simulators [12, 25, 26] to improve the robustness
of grasping and manipulation. But functional grasping with
multi-fingered hands remains underexplored.

We propose learning functional grasps using low-quality
reconstructed HOI data, without relying on costly human
demonstrations. Specifically, we obtain hand-object interac-
tions (HOI) from web-crawled images of humans holding
objects using a pretrained 3D reconstruction model [21].
We retarget the human hand mesh to the multi-fingered
ShadowHand robot using AnyTeleop [27], and align the
noisy object meshes with accurate 3D shapes generated by
text-to-3D tools Meshy AI [28]. Using HOI data, we train
the interaction-centric grasp model DRO [4], which takes as
input point clouds of the robot and object sampled from their
respective meshes, and outputs a grasp joint configuration. To
expand the web-based HOI dataset, we deployed the model
trained on web data in IsaacGym and collected successful
grasps through simulation. This simulator-augmented dataset
further improves grasping performance. Overall, this paper
makes the following contributions:

• We propose and demonstrate that reconstructed, low-
quality hand-object interactions (HOI) from web images
can be effectively leveraged to train dexterous and
functional grasping policies.

• Our approach, trained on HOI data from web im-
ages and further augmented with simulation data,
achieves grasp success rates of 61.8% and 83.4% re-
spectively with the ShadowHand across a wide range
of objects—including those underrepresented in existing
datasets, such as syringes, pens, and spray bottles.

• Our approach outperforms baseline methods, achieving
a 6.7% improvement in grasp success rate and a notable
gain in human-evaluated functionality scores.

https://web2grasp.github.io/
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Fig. 1: Hand-Object Interaction (HOI) Collection, Grasp Model Training and Execution Pipeline. (a) and (b): HOI grasp data,
potentially containing penetrations and unrealistic contacts, is reconstructed from randomly scraped web images. (c): The DRO grasping
model is trained on this HOI dataset to predict target joint configurations for grasp execution. (d): Physically feasible grasps are collected
in simulation to expand the dataset and retrain the model.

II. METHOD

A. Reconstructing HOI as Grasp Training Data

Our method begins with the reconstruction of HOI from
web-crawled images of humans holding objects, which are
then used as a functional grasping training dataset. Given
an image I depicting a hand holding an object, we aim to
reconstruct the 3D shapes and poses of the hand and the
object involved in the interaction. Specifically, we apply the
method proposed by Ye et al. [21] to predict the MANO
hand pose θ, which is a low-dimensional representation of
human hand, using the off-the-shelf Frankmocap [29] and
infer the shape of the interacting object in the same frame
via a hand pose-conditioned signed-distance function (SDF).

To leverage reconstructed HOI data for dexterous grasp
training, we first retarget the MANO hand poses to the
robot joint configuration q. We employ AnyTeleop, which
uses position-based optimization [27] to minimize the 3D
positional error between keypoints on the robot’s links and
their corresponding points on the MANO hand mesh. The
reconstructed object meshes are often of low quality, ex-
hibiting imprecise geometry and visually unrealistic appear-
ances—see the gray power drill in Figure 1(b)—particularly
in cases of significant hand occlusion or when the objects
are outside the training distribution [21, 22]. Thus, we align
it with an accurate 3D mesh from the same category using
the ICP algorithm, following the approach in [22]. These
accurate 3D meshes can be easily obtained from online mesh
generators by inputting the object name as text, such as
MeshyAI [28] and Genie [30]. Our objective is not to achieve
a pixel-perfect reconstruction of the object in the image, but
to retain the key interaction cues—enabling the robot hand
to interact with the object in a manner that is both natural
and functionally aligned with human behavior. Figure 1 (a)

and (b) shows the process.

B. Interaction-Centric Grasping Model Training

Although reconstructed HOI data is not as precise as
human-collected data—often exhibiting issues such as ex-
cessive penetration or unstable finger contact—it can still
capture the essential functionality of hand-object interaction,
provided the reconstruction is accurate. As such, traditional
robot-centric grasping models, which require accurate tar-
get joint configurations as training labels, or object-centric
models, which rely on precise contact maps of the object
shape, may not be ideal for this scenario. A recent alternative,
the interaction-centric model DRO [4] measures relative
distances between the robot hand and object point clouds
and emphasize on their interaction, making it well-suited for
imperfect HOI data.

In DRO, for a dexterous robot hand, such as the Shad-
owHand, and its URDF, we first sample points on the
surface of each link, storing the resulting point clouds as
{Pℓi}

Nℓ

i=1, where Nℓ is the number of links. Next, we define
a point cloud forward kinematics model for the robot hand,
FK

(
q, {Pℓi}

Nℓ

i=1

)
, which maps each joint configuration to a

corresponding set of point clouds. For instance, for an initial
configuration qinit, we obtain PR

init = FK
(
qinit, {Pℓi}

Nℓ

i=1

)
∈

RNR×3, where NR is the total number of robot point clouds.
Given PR

init and the object point cloud PO ∈ RNO×3, sam-
pled from the object mesh in the HOI data (where NO repre-
sents the number of object point clouds), the objective of the
DRO model is to predict the point-to-point distance matrix
D(R,O)

Pred ∈ RNR×NO . The training loss is computed by
evaluating the difference between the predicted and ground-
truth distance matrices with LL1

(
D(R,O)

Pred
,D(R,O)

GT
)

.



Fig. 2: Visualization of HOI Reconstruction from Web Images. Reconstructions for representative objects. Success cases—Row 1:
Power Drill, Pen; Row 2: Spray Bottle, Wine Glass; Row 3: Syringe, Tongs. Failure cases—Row 4: Lantern, Scissors. From left to right:
original web image, web image overlaid with HOI mesh, HOI mesh alone, and HOI mesh with retargeted robot hand and aligned object.

Using D(R,O)
Pred and the object point clouds PO, we

can position the robot point cloud in the target grasp pose
PR

target with multilateration method [31]. Once the predicted

grasp point cloud
{
Ptarget

ℓi

}Nℓ

i=1
∈ PR

target is obtained, we can
compute the 6D pose of each link and the joint configuration
through optimization. See Figure 1 (c) for visualization and
see Wei et al. [4] for further details.

C. Simulator-Augmented Dataset

Although we can reconstruct thousands of HOI data from
the vast collection of internet images, many of them are
unusable due to issues such as improper hand detection, inac-
curate object shape reconstruction, and faulty interactions. A
significant portion must be filtered out—either automatically
using numerical metrics like the object contact ratio [14],
or manually through human inspection. Additionally, pen-
etration between the hand and object, as well as unstable
contact, presents further challenges. These issues can cause
the DRO model trained on such data to apply excessive force,
resulting in the object being bumped out during grasping, or
fail to maintain a stable hold under external disturbances.

To improve both the quantity and quality of the grasping
dataset, we collect functional, physically feasible training
data through simulation evaluation. After the initial training
phase with HOI data reconstructed from web images, we
deploy the grasping model in IsaacGym [32], a high-fidelity
physics simulator, to perform grasping tasks. Only successful
grasps withstand external force distance are retained and
added to the training set, shown in Figure 1 (d). This process
ensures that the training grasps are functional and physically
valid: the model learns from functional HOI examples, while
the simulator filters out unstable or penetrative interactions.

III. EXPERIMENTS

A. Simulation Grasp Experiment

1) Setup and Baselines.: We evaluate the grasp success
rate using ShadowHand in IsaacGym simulator. Our method
is compared against the following baselines: (1) GenDex-
Grasp [2]: Generates grasp poses for novel objects by
leveraging contact maps as a hand-agnostic intermediate

representation; (2) DexGraspNet [1]: A model trained on
a large-scale dexterous grasp dataset; (3) DRO [4]: An
interaction-centric model that predicts the relative distance
between robotic hand and object point clouds. Our method
adopts the DRO model architecture and trains it using our
reconstructed HOI dataset (web data), which consists of 10
object categories with 100 web images per category: Power
Drill, Pen, Microphone, Phone, Spray Bottle, Wine Glass,
Tong, Syringe, Mug, Sword. We test on 9 unseen object cat-
egories: Whip, Teapot, Axe, Remote, Torch, Hammer, Whisk,
Hand Soap Bottle, Writing Brush. For data augmentation,
we deploy the model trained on web data in IsaacGym and
collect 200 successful grasps per object—including those
from the unseen test set—forming an expanded simulation
dataset (sim data) for model retraining. For both the web
and simulation datasets, models are trained on all object
categories within their respective sets and evaluated based
on grasp success rate. We define a successful grasp as one
in which the object displacement remains below 2 mm under
external force disturbances, indicating a stable grasp.

2) HOI Reconstruction Results.: (2) From a qualitative
perspective, while not all reconstructed HOI data is accu-
rate, many examples preserve the functional grasp patterns
observed in the original web images—see the first three rows
of Figure 2. The MANO hand pose detection tends to be
relatively stable, but the reconstructed object meshes are of-
ten incomplete or capture only a coarse approximation of the
object’s shape (see the second and third columns of Figure 2).
Although the aligned object mesh provides a more accurate
geometry, several issues remain: (1) Penetration between the
robot hand and the object exists, as observed in examples
like Spray Bottle and Syringe. (2) Some contact points
are imprecise—for example, the index finger is positioned
between the prongs of the Tongs. Despite these limitations,
we show in Section III-A.3 that a grasping model trained on
this relatively low-quality data still performs effectively.

In addition, reconstructed hand-object interactions often
fail for certain object types with complex geometry or
interaction mode, such as buckets or scissors. For example, in
the case of buckets, the reconstruction typically captures the



Dataset Power
drill Pen Microphone Phone Spray

bottle
Wine
glass Tong Syringe Mug Sword

Web data 98 92 98 62 74 86 72 64 88 24
Sim aug 92 97 99 80 71 92 94 72 99 55

Whip Teapot Axe Remote Torch Hammer Whisk Soap
bottle

Writing
brush Average

Web data 8 12 10 92 82 94 20 80 19 61.8
Sim aug 30 99 82 89 96 78 100 82 78 83.4

TABLE I: Grasp Success Rates in IsaacGym for Models Trained on Different Datasets. Objects from Power Drill to Sword are
seen during training, while Whip to Writing Brush are unseen. Both methods are evaluated over 100 trials per object. The model trained
on web data performs well on seen objects, and performance further improves on unseen objects with simulation-augmented data.

Fig. 3: Visualization of Generated Grasps Across All Objects. The first row shows objects seen during web-data training, while the
second row presents unseen objects from the test set.

main body while missing thin structures like the handle. Con-
sequently, after ICP alignment, the hand is positioned near
the bucket’s body instead of grasping the handle. Scissors
also present challenges due to their unique interaction mode,
where fingers are placed inside the holes of handles—a
pattern not commonly found in other objects. See the last
row of Figure 2 for an illustration.

3) Simulation Grasp Results.: (1) Our grasping model,
trained with web data and simulation-augmented datasets,
achieves success rates of 61.8 % and 83.4 %, respectively,
as summarized in Table I. This demonstrates that functional
grasping models can be effectively trained using 3D recon-
structed HOI from web data, without requiring extensive
human annotations. Although performance on certain seen
objects (e.g., Phone, Long Sword) and unseen objects may
initially be lower due to limited data, it improves significantly
with the addition of simulated interaction data generated
in IsaacGym using the web-trained model. For instance,
we observe frequent hand-object penetrations when grasping
the Phone, and difficulty in securely holding the Sword in
web dataset, both of which negatively affect success rates.
The simulation-augmented dataset helps address these issues
by collecting physically plausible grasps since IsaacGym
prevents penetration and ensures that only stable contacts,
capable of withstanding external force disturbances, are
saved. Moreover, the model trained with simulation data
demonstrates functional grasp behavior, see Figure 3.

(2) Our grasping model outperforms all baselines in both
success rate and functionality score, as summarized in Ta-
ble II. Functionality is evaluated through human studies,
where participants are shown two grasps—each from a
randomly selected pair of methods—and asked to choose
the one they find more natural and functional. We normalize

SR (%) Functionality
GenDexGrasp [2] 20.56 6.4
DexGraspNet [1] 39.56 19.6

DRO [4] 33.44 26.3
Our (Web data) 46.33 47.7

TABLE II: Grasping Performance of Unseen Objects in Simu-
lation. SR = Success Rate. Functionality scores are based on human
evaluation of functional correctness.

the number of votes received by each method to compute the
final scores. For a fair comparison, all methods are evaluated
on the same set of 9 unseen test objects. While baseline
methods perform well on common objects that require only
stable grasps—as shown in their original papers—they often
overlook functional grasp strategies, such as placing a finger
on top of a Spray Bottle for operate. In contrast, our method
learns such nuanced interactions from web data and gener-
alizes effectively to novel but related object categories, such
as transferring from Pen to Writing Brush, Mug to Teapot,
and Spray Bottle to Hand Soap Bottle.

IV. CONCLUSIONS

This work introduces and demonstrates an approach for
learning functional grasps using 3D reconstructed HOI data
from internet images, bypassing the need for expensive
human-collected data. The method integrates an interaction-
centric grasping model DRO to focus on the functional
interactions between hand and object point clouds, making it
effective for noisy HOI data. Experiments show that the pro-
posed approach can: (i) effectively handle low-quality HOI
data to train high-performance functional grasping models,
(ii) be tested across a wide range of objects requiring diverse
functional grasps, using the Shadowhand in simulation, and
(iii) outperform baseline models in both grasping success
rates and human-evaluated functionality.
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