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Abstract— Reconstructing unknown external source func-
tions is an important perception capability for a large range
of robotics domains including manipulation, aerial, and under-
water robotics. In this work, we propose a Physics-Informed
Neural Network (PINN [1]) based approach for solving the
inverse source problems in robotics, jointly identifying unknown
source functions and the complete state of a system given partial
and noisy observations. Our approach demonstrates several
advantages over prior works (Finite Element Methods (FEM)
and data-driven approaches): it offers flexibility in integrating
diverse constraints and boundary conditions; eliminates the
need for complex discretizations (e.g., meshing); easily accom-
modates gradients from real measurements; and does not limit
performance based on the diversity and quality of training
data. We validate our method across three simulation and real-
world scenarios involving up to 4th order partial differential
equations (PDEs), constraints such as Signorini and Dirichlet,
and various regression losses including Chamfer distance and
L2 norm. https://www.mmintlab.com/nisp

I. INTRODUCTION

We are interested in differential equations g with an
unknown external source f :

g(x,Φ,∇xΦ,∇2
xΦ, ...) = f(x), Φ : x 7−→ Φ(x). (1)

Our objective is to determine the external source function
f(x) ∈ Rq and the full mapping from spatial/temporal
coordinates x ∈ Rs to the quantity of interest Φ(x) ∈
Rr from known governing equations g and partial/noisy
observations. This problem, known as an inverse source prob-
lem [2]–[4], is of significant importance in various scientific
and engineering domains such as signal processing [5], fluid
dynamics [6], [7], optics [8], and more.

To address these inverse source problems in robotics, a
common strategy is to use finite element analysis integrated
with optimization techniques [9], [10] or physics engine [11],
[12]. While these approaches focus on computation efficien-
cies, they suffer two notable limitations. First, they rely on
complex discretization and/or meshing, which affects pre-
cision and introduces significant complexity. Second, these
approaches require unique treatment for different equations
and constraints, which significantly limits their generality.
Recent progress in representation learning addresses these
issues via learning priors over the simulated source functions,
where the data implicitly contains all the constraints and
boundary conditions. For example, prior works in manip-
ulation simulate extrinsic contact, a source function exerting
forces on deformable [13]–[16] or rigid objects [17], [18].
Another example involves simulating sensor deformations as

1 Youngsun Wi, Jayjun Lee, Miquel Oller, and Nima Fazeli are with the
Robotics Department at the University of Michigan, MI, USA <yswi,
jayjun, oller, nfz>@umich.edu

a source function transducing electric signals [19]. However,
the performance of these approaches relies heavily on the
diversity and quality of training data and does not guarantee
adherence to the physics, especially with out-of-distribution
inputs. Latent force models [20], [21] present an alternative
approach using Gaussian processes to identify unknowns in
differential equations; however, they are restricted to linear
models, and it remains unclear how complex constraints
could be effectively integrated.

In this paper, we propose a method for solving the inverse
source problem based on Physics-Informed Neural Networks
[1] that enables the simultaneous inference of both the
source function and the full state given partial and noisy
observations. Our method offers several advantages over
prior work in robotics: compatibility with various nth-order
differential equations (including ordinary and partial differ-
ential equations), flexibility in integrating various constraints,
initial values, and boundary conditions, elimination of the
need for non-trivial discretizations like meshing, ease of
accommodating gradients from real measurements, and does
not limit performance based on the diversity training data.

II. PROBLEM FORMULATION

Our goal is to learn a mapping Ψ : x 7−→ (Φ(x), f(x))
that satisfies

g
(
x,Φ,∇xΦ,∇2

xΦ, . . .
)
= f(x), ∀x ∈ Ωn (2)

subject to

Cm
(
x,Φθ,∇xΦ,∇2

xΦ, . . . , f(x)
)
= 0, ∀x ∈ Ωm. (3)

where x is a spatial/temporal coordinates we have par-
tial/noisy access to, Φ(x) is the fully/partialy observ-
able quantity of interest(e.g., deformation field, electric
field, etc.), f(x) is a Lipschitz continuous source func-
tion, and Ωn,Ωm are subsets of a bounded domain Ω.
When we approximate the mapping with a neural network
as Ψθ(x) and fθ(x), this problem becomes solving for
the network parameters θ, satisfying the differential equa-
tions g(x,Φ,∇xΦθ,∇2

xΦθ, . . .) − fθ(x) = 0 and M con-
straints {Cm(x,Φθ,∇xΦθ,∇2

xΦθ, . . . , fθ(x)}Mm=1. We cast
this problem into a loss:

1

|Ωn|

∫
Ωn

(gn(x,Φθ,∇xΦθ, . . .)− fθ(x))
2
dx (4)

+

M∑
m=1

1

|Ωm|

∫
Ωm

Cm(x,Φθ,∇xΦθ, . . . , fθ(x))
2 dx.

(5)



Fig. 1: Modified MLP with L layers. Green arrows indicate fully
connected layers, and red arrows indicate Eq. 6 operations. L is
the number of the green box module from the input x to the output
Ψθ(x) = (y(x),f(x)).

where the first term represents residual losses (Lr) of the
differential equation (DE), and the second term represents the
constraint loss. The constraint loss includes various forms of
regression losses (Lreg) enforcing desired output at specific
coordinates (e.g., Chamfer Distance, Mean Square Error),
boundary conditions (e.g., Dirichlet, Neumann, Signorini),
and equality and inequality constraints.

III. METHODOLOGY

A. Modified Multi-layer Perceptron

We use a modified multi-layer perceptron (MLP), which
has been shown to excel at learning PINNs [22], [23]. The
modified MLP’s l-th layer has 2 steps:

z′(l) = tanh(W(l)z(l−1) + b(l)), (6)

z(l) = c · z′(l) + d · (1− z′(l)). (7)

The first step is a fully connected layer with weight W(l),
bias b(l), and a tanh activation function acting on the
previous layer output z(l−1). The second step weights the
output z′(l) with c and d from separate MLPs with a tanh
activation function, as in Fig. 1. Here, we propose the last
fully connected layer unique to each dimension of y and f .

B. Incorporating Inductive Bias into Network Design

Many practical robotics systems have low-frequency sig-
nals, and building a network with bandwidth matching the
underlying signal is essential for robustness to signal noise
and successful training. We found that removing the input
mappings helps the model be robust to measurement noise,
whereas prior works in AI4science [22], [24] highlight the
necessity of the input mappings, particularly when focusing
on high-frequency signals.

C. Non-dimensionalization

Ensuring inputs and outputs have reasonable scales is
crucial for successful training [24]–[26]. We normalize inputs
to be within a unit cube [−1, 1]s and each dimension of the
outputs to have similar scales. For instance, if we scale inputs
in [m] unit by some value k, we scale Young’s modulus
[N/m2] by 1

k2 and depth measurements in [m] unit by k.

D. Loss Weighting

We found that an effective training strategy is to quickly
regress to the partial measurements and then gradually
solve for the forcing function. One way to control the
convergence speed of each loss term is by updating the
loss weights every hundred epochs using each loss term’s
gradients [24]; however, this approach is expensive in time
and space, especially with highly nonlinear and high-order
residual losses. Instead, we recommend fixed loss weightings
satisfying 50λr∥∇θLr∥ ≤ λreg∥∇θLreg∥, where ∇θLreg and
∇θLr are the gradients of the regression and residual loss.

IV. REAL-WORLD EXPERIMENTS

We present two real-world inverse source problems that
vary in several key aspects: the order of the differential
equations, the degree of observability (ranging from partial
to full measurements), and the levels of noise in the data.
Additionally, we demonstrate system parameter identification
using the same framework.

A. Softbody Contact Problem

A softbody with linear elasticity interacting with a rigid
environment is known as a Signorini Problem. This problem
is defined in 3D coordinates u of an undeformed softbody
x ∈ R3. The quantity of interest u(x) ∈ R3 is the defor-
mation field, and the forcing function f(x) ∈ R3 is contact
pressure applied perpendicular to the surface. Following [27],
our problem is:

Φ : Ω ⊂ R3 → R3, x 7→ u(x), (8a)
σ(x)n = f(x) ≥ 0 on Ωb, (8b)
div σ(x) + ρ g = 0 in Ω, (8c)

σ(x) = Dε(x), ε(x) = 1
2

(
∇u+∇uT

)
. (8d)

where σ(x) is the stress tensor, n is the normal vector at
the query, ρ is the density, g is the gravitational constant, D
is the elasticity tensor, and ε(x) is the strain tensor. Domain
Ω is the entire volume of interest with the boundary ωb.
The domain Ωs is the four sides of the cubed sponge, where
we assume no contact for simplification. Eq. 8 represent the
force equilibrium at the contact and the infinitesimal volume
at x, respectively. f(x) is always greater than 0 because
normal tractions can only be compressive.

Dataset: We select 20 examples from [13]’s real-world
dataset, where each data sample consists of a single deformed
sponge’s partial and noisy measurement (Pm,wm). The
sponge is a 46 mm cube with a Young’s modulus E = 1.1×
104 and a Poisson’s ratio ν = 0.1. The sponge was attached
to the Pandas Franka Emika robot with a force-torque sensor
(ATI-Gamma) mounted at the wrist. This dataset includes
ground truth contact locations for evaluation, obtained by
directly observing the contact location through a transparent
acrylic plate.

Training: Our model takes the wrist wrench and partial
point clouds as input, and it predicts the full deformation and
contact pressure. If we define the entire 3D query space as



Fig. 2: Soft Bubbles test data collection setup with 6 objects.

Ω = [−0.43, 0.43]3, all six surfaces as Ωb, and four sides as
Ωs, the loss function is defined as:

L(θ) = λ1 CD
(
Pm, Pθ

)
+ λ2 ∥wm −wθ∥2

+
λ3

|Ωs|
∑
x∈Ωs

∥f(x)∥2 + λ4

|Ω|
∑
x∈Ω

σn(x)u(x)·n

+
λ5

|Ωb|
∑
x∈Ωb

∥σ(x)n− f(x)∥2

+
λ6

|Ω|
∑
x∈Ω

∥div σ(x) + ρ g∥2.

(9)

where CD is a single directional Chamfer Distance from
Pm to estimated deformed surface pointcloud Pθ = {x +
u(x)|x ∈ Ωb} and wθ is a wrist wrench estimation calcu-
lated from the estimated contact pressure as in [28]. The third
term represents an inductive bias that there are no contacts
at the sides, and the fourth term represents a Signorini
constraint, where σn = n · σ(x)n. The last two terms are
residual losses from Eq. 9.

B. Membrane-based Tactile Sensor

Here, we emphasizes the capacity of our method to solve
high-order and complex differential equations’ inverse source
problems. We show our model’s ability to perform system
identification with the same framework and robustness to
partial and noisy observations unlike [9], [10].

Thin membrane system [29] is defined in 2D in-plane
coordinates α and β. The quantity of interest is the 3D
deformation [u, w] corresponding to the undeformed in-plane
coordinates of the membrane. The forcing function f(x) ∈ R
represents the contact pressure applied perpendicular to the
surface normal. The governing equation and the boundary
conditions are given by:

x = (α, β) ∈ R2, Φ : x 7→ (u, w) ∈ R3,

D∆2w − t ∂β
[
σαβ(x) ∂αw

]
− p = f(x),

with w = 0, u = 0, f(x) = 0 on Ωb.

(10)

where D = Et3/12(1 − ν2) is a constant of flexural
rigidity consisting of Young’s modulus E and Poisson’s ratio
ν, t is the plate thickness, the biharmonic operator ∆2 is
∂4

∂α4 + ∂4

∂β4 + 2 ∂4

∂α2∂β2 , σαβ is the shear stress, u ∈ R2

represents the in-plane displacement, w denotes the out-of-
plane deflection, and p is the traverse load per area from air

pressure and gravity. The membrane is subject to a Dirichlet
boundary condition in the domain Ωb.

Dataset: Our dataset D = {Pm, pm} consists of partial
and noisy point clouds Pi and internal air pressures from
the pressure sensor pm. We recorded 24 data samples from 6
different geometries with 4 interactions per object, as shown
in Fig. 2. For each interaction, the Soft Bubble randomly
rotates in yaw ∈ [−90◦, 90◦] and lowers until the contact
force reaches 8 ∼ 11 N. We use a Kuka arm equipped with
an ATI-gamma F/T sensor mounted on the wrist to move
the Soft Bubble. The reaction wrench measurement from
the F/T sensors is used only for evaluation purposes of our
contact pressure estimation. The Soft Bubble’s membrane
has a thickness of t = 0.45 mm and is an ellipse with major
axis a = 0.06 m and minor axis b = 0.04 m.

System Identification: Our network can also perform sys-
tem identifications via optimizing for unknown parameters.
When we use an inflated sensor pointcloud without contact,
the sourcing term is all zero fθ = 0 and Young’s modulus
is the only unknown parameter. The loss function becomes

min
E,θ

λ1 CD
(
Pm, Pθ

)
+ λ2

∑
x∈Ω

gE,θ(x)
2/|Ω|

+ λ3

∑
x∈Ωb

[
wθ(x)

2 + ∥uθ(x)∥2 + fθ(x)
2
]
/|Ωb|.

(11)

where gE,θ is the left hand side of Eq. 10, Ω =
{(α, β, w)|(αa )

2 + (βb )
2 ≤ 1}, Ωb is the boundary of Ω,

CD is one-directional Chamfer Distance from noisy partial
pointcloud measurement Pm to our predicted full pointcloud
Pθ = (α, β, 0) + (uθ, wθ)|(α, β) ∈ Ω}.

Training: Given a pointcloud under contact Pm, the loss
function for contact pressure estimation is

min
θ

λ1 CD
(
Pm, Pθ

)
+ λ2

∑
x∈Ω

[
gθ(x)− fθ(x)

]2
/|Ω|

+ λ3

∑
x∈Ωb

[
wθ(x)

2 + ∥uθ(x)∥2 + fθ(x)
2
]
/|Ωb|.

(12)

The only difference between Eq. 11 is non zero fθ and that
the Young’s modulus is not updating.

V. RESULTS

A. Softbody Contact Problem

Results: We consider a point to be in contact when the
estimated contact pressure exceeds 1,500 Pa, found to be
optimal through grid search. The average Chamfer Distance
between the ground truth and the estimated contact patch is
45 mm2 (Ours), whereas the baseline achieves 32 mm2.

Baseline: Our SOTA baseline [13] tackles this ill-posed
problem by training a neural network on a dataset comprising
a total of 3,000 sponges-environment interactions. One-third
of the data includes sponge-box interactions, similar to
their real-world dataset’s sponges-tables interactions. They
utilize Isaac Gym’s softbody simulation [30], based on finite
element method (FEM), which is non-differentiable and can



Fig. 3: A) Partial pointcloud measurement (green), B) reconstructed
deformed geometry where the color represents predicted contact
pressure ranging from 0 to 4,000Pa, C) ground truth contact (blue)
and partial observation (green), D) estimated contact location (red)
overlaid with the ground truth (blue), E) baseline’s contact location
(yellow) overlaid with the ground truth (blue).

only address forward problems. The baseline [13] takes wrist
wrench, partial point clouds, and a trial code as inputs, and
produces signed distances and binary contact as outputs.

Result: We demonstrate that our results are both qualita-
tively and quantitatively comparable to the SOTA baseline
[13] (Fig. 3). This is impressive considering that our model
had to infer from an infinite number of contact possibilities
from partial and noisy measurements and physics equations,
whereas the baseline [13] relies on strong priors obtained
from the data it was trained on.

B. Membrane-based Tactile Sensor

System Identification: The resulting Young’s modulus
is E = 341, 260Pa when We usedν = 0.5 like typical
rubber [9] and p = 103, 320Pa from the pressure sensor
measurement.

Metrics: We evaluate the predicted contact pressure with
1) contact patch and 2) net contact force estimation. For
contact patch evaluations, we use Intersection over Union
(IoU) and bidirectional Chamfer Distance (CD). We classify
a point in contact if the predicted contact pressure satisfies
fθ(x) > max(2500, 2

|Ω|
∫
Ω
fθd|A|), where 1

|Ω|
∫
Ω
fθd|A| is

the average contact pressure across the entire bubble surface
area [9]. Here, the ground truth is the intersection of the
Soft Bubble pointcloud and the object mesh, using known
transformations. For contact force evaluations, we use L2
norm between the estimated wrench at the wrist (Fig. 2).

Baselines: Our SOTA baseline [9] is a Finite-element
(FE) based approach, highly specialized in the Soft Bubble’s
3D contact force and contact location estimation. Unlike
our approach, [9] requires correspondence tracking between
mesh before and after contact, a special system identification
process requiring a total of 205 data points, and a result
refinement step for handling partial and noisy observations
using a convex optimization (CVXPY). We utilized their finest
mesh resolution with 749 vertices along with their best-
identified model calibration results.

A  B  C   D A  B  C   D

Fig. 4: A) Visualization of real-world Soft Bubble and object (pink)
interactions. B) Real-world Soft Bubble point cloud measurement
with holes and occlusions. The color represents heights from the
x-y plane. C) Ground truth contact mask prediction (navy). D)
Estimated contact pressure overlaid with the ground truth contact
location indicated in outlines (blue).

Results: Fig. 4 shows examples of bubble-object interac-
tions and the resulting contact pressure estimation from our
model. Tab. I indicates that our method excels at contact
patch predictions for all shapes except for Y, producing
15% higher IoU and 22.2% smaller chamfer distances when
compared to the baseline. highlighting that our predicted
contact masks are much smoother, less noisy, and more
precise at following the shapes of the objects. Although the
predicted contact pressures outperformed results on contact
patch estimation, the predicted contact force produced a
1.083 N higher contact force L2 error, which is about 10.8%
of the average contact force scale, 9.99 N.

Ours [9]

Shape IoU ↑ CD ↓ Force ↓ IoU ↑ CD ↓ Force ↓
Flower 0.604 1.000 1.900 0.557 1.026 0.678
O 0.376 2.191 2.056 0.334 2.357 0.706
Y 0.541 1.120 1.741 0.581 0.933 0.357
Cylinder 0.647 0.903 2.758 0.553 1.083 1.642
Cross 0.680 0.635 1.350 0.431 1.750 0.873
90 Curve 0.597 0.911 1.514 0.511 1.514 0.563

Average 0.574 1.127 1.886 0.494 1.444 0.803

TABLE I: Soft Bubble’s contact-patch and contact-force estima-
tion on six shapes, comparing our method vs. the FEM-based
baseline [9]. Force is the ℓ2 norm of the contact-force error.

VI. CONCLUSION AND LIMITATIONS

While our approach has shown effective in solving inverse
source problems in some real-world robotics applications,
we have yet to explore real-time inference capacity and
representing multiple DE solutions with single networks.
Interesting future work is to parameterize multiple DE so-
lutions, similar to methods used in [13], [16], [31], and
integrate the latent space inference for potential real-time
applications. Additionally, while our method relies on the
known governing equations of the system, an exciting di-
rection involves replacing these known differential equations
with surrogate models identified from data [32]–[34].
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