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Abstract— Long-horizon contact-rich manipulation has long
been a challenging problem, as it requires reasoning over
both discrete contact modes and continuous object motion.
We introduce Implicit Contact Diffuser (ICD), a diffusion-based
model that generates a sequence of neural descriptors that
specify a series of contact relationships between the object and
the environment. This sequence is then used as guidance for an
MPC method to accomplish a given task. The key advantage of
this approach is that the latent descriptors provide more task-
relevant guidance to MPC, helping to avoid local minima for
contact-rich manipulation tasks. Our experiments demonstrate
that ICD outperforms baselines on complex, long-horizon,
contact-rich manipulation tasks, such as cable routing and
notebook folding. Additionally, our experiments also indicate
that ICD can generalize a target contact relationship to a
different environment. More visualizations can be found on our
website https://implicit-contact-diffuser.github.io

I. INTRODUCTION

Interacting through contact is central to many robotic
tasks, such as manipulation and locomotion. However, con-
trolling hybrid systems is challenging due to the interplay
between discrete contact events and continuous motion. In
cable routing, for example, the robot must generate smooth
motions to initiate and maintain contact between the cable
and fixtures (Fig. 1). A break in contact may cause failure,
and the robot must adapt to disturbances to ensure success.

A large body of work has attempted to tackle these chal-
lenges by planning [1], [2], [3], [4] or trajectory optimiza-
tion [5], [6], [7] through contact. However, these methods are
typically limited to rigid objects, or face limitations in online
replanning due to the high computational costs involved.

We propose a learning-based model predictive control
(MPC) framework for contact-rich tasks. Central to our
approach is a latent diffusion model that generates future
contact sequences as subgoals, guiding an MPC controller to
produce motions that realize the desired contact relations. A
key question, however, is determining the best representation
for these contact relationships.

However, this approach lacks critical information re-
garding which part of the object should be in contact, a
crucial factor for tasks where maintaining precise object-
environment interactions is important. Additionally, it cannot
capture the dynamic contact switching required in certain
tasks.

To address these limitations, we propose to encode contact
relationships using a modified version of Neural Descriptor
Fields (NDF) [8]. We train a scene-level NDF to capture
geometric information by predicting occupancy and gradient
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Fig. 1: By predicting future contact sequences using a latent diffusion model,
we enable long-horizon contact-rich deformable object manipulation such
as cable routing using a sampling-based MPC controller.

direction of the signed distance function. By querying the
scene NDF with the object’s point cloud, we compute a
dense, contact-aware representation of the object. Our ex-
periments show that these neural descriptors capture task-
relevant geometric relationships (e.g., left or right of a
fixture) rather than specific locations, providing more flexible
guidance. This allows us to transfer goal contact relationships
across different environments at test time.

To capture the contact switching required to reach a goal,
we train a latent diffusion model to predict the contact
sequence represented by neural descriptors. The key con-
tributions of this paper are: 1) a latent diffusion model
that reasons about evolving contact relationships in long-
horizon manipulation tasks; 2) an MPC framework that plans
motions based on desired contact relationships rather than
precise locations. 3) a scene-level neural descriptor field
that provides local contact representations, enabling greater
generalization across environments.

We validate our method on long-horizon, contact-rich
tasks including cable routing and notebook folding. ICD
consistently matches or outperforms baselines that plan to
fixed positions or directly predict actions, and naturally
adapts target contact relations across environments.

II. PRELIMINARIES

A. Problem Statement

In this paper, we consider long-horizon contact-rich ma-
nipulation problems that involve changing contacts. The goal
is specified by a pair of point clouds (Pog ,Ps), where Pog

and Ps represent the object in its goal state and the scene
respectively.

Rather than matching the exact goal shape or pose of the
object, our objective is to match the contact relationship
between the object and the scene, so that the object is
in contact with the scene in the appropriate locations. For
example, in cable routing, the objective is to route the cable
through the opening of the hook, the cable must pass through

https://implicit-contact-diffuser.github.io/
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Fig. 2: System overview, with the notebook folding task as an example. First, ICD transforms the scene, current object, and goal object point cloud, into
an implicit contact representation using a modified NDF model. The NDF model can be used to extract point-wise contact relationships of the object,
shown by the color. Next, we project the dense NDF point clouds into low-dimensional latent vectors and utilize a latent diffusion model to generate a
sequence of contact subgoals. The latent diffusion model generates subgoals recursively from coarse to fine, depending on a reachability measure. Finally,
we track these predicted subgoals using a sampling-based MPC method, ensuring that the object reaches the desired contact specification.

a hook such that it touches the front but not the back. This
type of problem presents significant challenges due to the
need for joint reasoning over both continuous motion and
discrete contact switching.

III. METHOD

We introduce Implicit Contact Diffuser, a method that
enables the joint reasoning of discrete change of contact and
continous motion in long-horizon manipulation problems.
Implicit Contact Diffuser captures the object-environment
contact relationship using a dense neural contact representa-
tion. Then, Implicit Contact Diffuser leverage a latent diffu-
sion model to predict the future contact sequence tracked by
a sampling-based MPC.

A. Contact-aware Neural Descriptor Field

Finding a suitable contact representation that facilitates
planning is a challenging problem. If we naively represent
contact with a binary discrete representation, planning over
the contact space can quickly become combinatorially expen-
sive, which is one of the reasons why prior methods [9], [4]
struggle with deformable objects. Our key insight is that we
can capture the soft object-environment contact relationships
using a continuous implicit neural representation. We build
upon Neural Descriptor Fields (NDF) [8], [10], [11] to
develop a contact-aware neural representation for deformable
objects, utilizing a scene NDF. Given a scene point cloud Ps,
we learn a function f to map a 3D coordinate x ∈ R3 to a
latent neural descriptor in Rd:

f(x|Ps) = f(x|Es(Ps)) (1)

where Es(Ps) is a PointNet [12] model. Given an object
point cloud Po, the state of the object can be described as
the concatenation of all point descriptors:

Pndf = ϕNDF (Po|Ps) =
⊕

xi∈Po

f(xi|Ps) (2)

Since the function f is trained to predict the geometric
features of the scene, the NDF point cloud Pndf ∈ RN×d

can be interpreted as an encoding of point-wise geometric
relations with the scene for every point on the object.

We make several key design choices to adapt NDF, en-
suring it better suits the tasks we are dealing with. Similar
to Simeonov et al. [8], we train f(x|Ps) using occupancy
prediction. Additionally, we incorporate an auxiliary loss on
the gradient direction of the signed distance function (SDF):
Jgrad = (∇SDF (x)−∇̂SDF (x))2, where ∇SDF (x) and
∇̂SDF (x)) refer to ground-truth and predicted gradients of
the SDF. This helps the descriptors encode not only whether
a point is in contact (occupied), but also how to make contact
for points that are not yet in contact.

NDF uses a SE(3)-invariant Vector Neuron architec-
ture [13] to improve descriptor generalization. However, full
SE(3) invariance can produce unrealistic results—for exam-
ple, treating contact with the floor and ceiling as equivalent.
To address this, we constrain invariance to gravity-aligned
rotations (SE(3)z) by adding a small constant to the z-axis
of point features, making descriptors sensitive to orientation
relative to gravity.

The original NDF model [8] encodes the entire point
cloud into a single global feature vector by averaging over
Es(Ps). In contrast, we aggregate the local features of nearby
contact candidates for each query point using K-nearest
neighbors (Fig. 3) based on the intuition that the object
is more likely to make contact with spatially closer points.
Our experiments indicate that incorporating these local NDF
features is important for improving task performance.

B. Implicit Contact Diffuser

Building on the dense contact-aware representation, we
introduce Implicit Contact Diffuser, a diffusion-based
model that generates a sequence of subgoals τndf =
[Pndf0 , . . . ,PndfM ], where each Pndf ∈ RN×d is an NDF
point cloud representing contact features.

Unlike prior works [14], [15] which only generate individ-
ual point cloud P ∈ RN×3 with diffusion model, we model
sequential latent point clouds to capture contact switching.
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Fig. 3: As shown in the the upper figure, the NDF model is trained to encode local geometries of the scene by predicting occupancy and gradient direction
of the Signed Distance Function (SDF) of the scene. Given an object point cloud Po, such as that of a notebook, we transform it into a contact-aware
latent representation Pndf . In the bottom figure, we show how the reachability-aware point cloud VAE is trained. In addition to the regular reconstruction
and KL divergence loss, we introduce a distributional reachability prediction loss to encourage temporal consistency in the latent space. The reachability
predictor is also used in the latent diffusion model to decide the number of subgoals required for the tasks, as shown in Fig. 2.

To address this, we adopt Latent Diffusion Models
(LDM) [16]. First, We train a Variational Autoencoder
(VAE) [17] to project the high-dimensional point cloud Pndf

into low-dimensional vectors. Next, we train a hierarchical
diffusion model to recursively generate subgoals from coarse
to fine, following Huang et al. [18].
Reachability-aware Point Cloud VAE. The VAE comprises
three components: a PointNet++ encoder Endf (zt|Pndft)
[19], a point-wise MLP decoder Dndf (P̂ndft |P canon

o , zt),
and a distributional reachability prediction MLP
φ(r̂|zt1 , zt2 , Es(Ps)), as visualized in Fig. 3. The encoder
Endf compresses the NDF point cloud Pndft into a latent
vector zt. The pointwise MLP decoder Dndf is adapted
from Luo et al. [14]. Given zt and the canonical object point
cloud P c

o , an implicit decoder Dndf reconstructs the NDF
point cloud from the latent vector. The query coordinates
P canon

o are predefined, i.e., a straight rope or a magazine
that is laid flat.

The VAE is trained by three different losses:

Lvae = λ1Lrecon(Pndf,P̂ndf ) (3)
+ λ2DKL(Endf (zt|Pndft),N(z)) (4)
+ λ3LReach(r, φ(r|zt1 , zt2 , Es(Ps))) (5)

In addition to the regular reconstruction loss and KL
regularization loss, we introduce a reachability loss Lreach to
encourage temporal consistency in the learned latent space.

During training, we sample pairs of states in the same
trajectory using the discounted state occupancy measure
(lower probability for states farther apart), in line with
previous work [20], [21]. Given a pair of NDF point clouds
(Pndft1

,Pndft2
), we define reachability as the minimum

number of steps to travel between them. Following Subgoal
Diffuser [18], we discretize the reachability into R bins and
frame the reachability prediction problem as a classification
problem. An MLP φ(r|zt1 , zt2 , Es(Ps)) with cross-entropy
loss.

Latent Point Cloud Diffusion Model Given current state,
goal specification, and the scene, the objective of the latent
diffusion model is to generate a sqeuence of NDF subgoals
τndf , . With the point cloud VAE described above, the diffu-
sion model only needs to model the distribution of the con-
densed latent vectors, denoted as p(τz|zcur, zgoal, Es(Ps)).
The diffusion model reasons about the contact interaction be-
tween predicted subgoals and the scene using cross-attention.
Following Subgoal Diffuser [18], we generate subgoal se-
quences recursively in a coarse to fine manner. Starting from
τ 0
z = [zcur, zgoal], in each iteration, the number of subgoals

in τ l+1
z increases by |τ l+1

z | = |τ l
z| × 2 − 1. Instead of

generating from scratch, the latent diffusion model predicts
the next level of subgoals τ l+1

z conditioned on the previous
ones τ l

z . Hence, the latent diffusion model can be written as
p(τ l+1

z |τ l
z, Es(Ps)).

C. MPPI with Implicit Contact Subgoals

We use Model Predictive Path Integral (MPPI)[22] to plan
robot actions that track contact subgoals. Actions are evalu-
ated via rollouts in MuJoCo[23], then transformed into NDF
space using ϕndf . The cost JMPPI is computed as the sum
of Euclidean distance to the ndf subgoals and a collision cost.
By minimizing JMPPI , the planner generates actions that
achieve the desired contact relationships defined by τ̂ndf .

IV. EXPERIMENTS

A. Simulation Experiments

1) Tasks: We evaluate our method on two long-horizon
manipulation tasks that involve changing contact (Fig. 5).
Cable routing. The goal is to route a rope through two
randomly placed fixtures. One end is fixed; the other is held
by a floating gripper. Success requires passing through both
fixtures. We also report the “complete rate”—the percentage
of individual fixtures routed correctly. This task is challeng-
ing due to: (1) high-dimensional rope dynamics, (2) precise



Fig. 4: Physical demonstration with a 7-DoF Kuka arm on cable routing with 3 different cables for a total of 10 runs. Videos are available on our website.

Cable routing Notebook folding

Fig. 5: We evaluate our methods on two long-horizon contact-rich tasks in
simulation: cable routing and notebook folding. Goals are visualized in red.

Method Cable Routing Notebook
Success ↑ Complete ↑ Success ↑

Implicit Contact Diffuser 90 95 95
Subgoal Diffuser [18] 65 80 100
Diffusion Policy [24] 30 40 70

3D Diffusion Policy [25] 15 40 5
PC-MPPI 25 55 50

NDF-MPPI 55 70 10

Global NDF 50 75 75

TABLE I: We evaluate every method on 10 test cases for 2 seeds (20 runs
in total) and report the success rate. For the cable routing task, success
is defined as the cable being routed through both fixtures. Additionally,
we report the ”complete rate,” which represents the percentage of fixtures
successfully routed by the cable.

control to maintain contacts, and (3) long-horizon planning
to avoid local minima.
Notebook folding. The task involves lifting a notebook from
the floor onto a table, laying it flat, and folding it—each
phase involving distinct contact modes. Table positions and
obstacle layouts are randomized. The notebook is grasped at
its edge center by a floating gripper. Success is defined by
reaching a goal point cloud within a set distance threshold.

For both tasks, the goal specification is provided as a point
cloud. We evaluated each method on 10 test cases for 2 seeds.
The environments are built in the MuJoCo [23] simulator.

B. Implementation Details

We collected 5,000 trajectories of length 200 for cable
routing and 10,000 trajectories of length 100 for notebook
using scripted policies. The NDF model is trained using
equal weights for occupancy prediction and SDF gradient
prediction. For VAE, the loss weights for reconstruction,
KL-divergence and reachability are 1, 1e−6 and 1e−5. For
the diffusion model, we follow the training scheme of
DDPMs [26] with 100 diffusion steps.

1) Baselines: 1) MPPI: MPPI without the subgoals for
guidance. We explore two different object representations
for cost computation, referred to as PC-MPPI and NDF-
MPPI; In PC-MPPI, the cost is computed as the distance
in point cloud space, while NDF-MPPI computes cost in
NDF space. 2) Subgoal Diffuser [18]: A modified version
of Subgoal Diffuser that predicts a sequence of object point
clouds using the same latent diffusion model as our method.

The predicted subgoals are also tracked by the same MPPI
planner. 3) Diffusion Policy [24]: We adapt the official
implementation to make the policy goal-conditioned. This
version uses a keypoints-based object representation, while
the scene information is encoded using the PointNet encoder
from the NDF model. 4) 3D Diffusion Policy [25]: This
baseline takes as input the point clouds of the object and
the scene, and directly predicts the actions for the robot to
execute. 5) Global NDF. Instead of retrieving local features
using KNN, this baseline follows the original NDF [8] to
compute a global feature vector for the entire scene.

2) Results: The quantitative results can be found in Ta-
ble I, and here we discuss our main findings.
Subgoal generation is critical for long-horizon reasoning.
We observe that the subgoal-based methods outperform both
model-free methods that do not have explicit long-horizon
reasoning (diffusion policy and 3D diffusion policy) and
MPC methods that plan directly to the goal (PC-MPPI and
NDF-MPPI).
Contact-aware state representation is critical for long-
horizon contact reasoning. While subgoal diffuser performs
well on notebook folding, its success rate drops significantly
on cable routing. Upon inspection, we found that the primary
failure mode is that the point cloud-based subgoal tends to
lead the MPC to local minima since it does not capture
the contact relationship. For example, the cable may appear
close to the goal but be on the wrong side of a fixture. In
contrast, our NDF-based subgoals encode geometric contact
relationships, offering more reliable guidance for achieving
correct contact configurations.

C. Physical Demonstration

1 2 3

Fig. 6: Cables used in the phys-
ical experiments.

We deployed Implicit Contact
Diffuser on a 7 DoF Kuka LBR
iiwa arm for a real-world ver-
sion of the cable-routing task.
We used a Zivid 2 camera and
CDCPD [27] to track the point
cloud of the cable. We tested on
3 different cables, one soft, thin
charging cable, one stiff ether-
net cable, and a thick rope, for a total of 10 trials. While our
method succeeds 9 / 10 runs, challenges such as perception
errors from the tracker and the limited workspace of the robot
affected the overall reliability of the method. Please see our
website for the videos.

https://implicit-contact-diffuser.github.io/
https://implicit-contact-diffuser.github.io/
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