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Abstract— Dexterous manipulation requires careful reason-
ing over extrinsic contacts. The prevalence of deforming tools
in human environments, the use of deformable sensors, and the
increasing number of soft robots yields a need for approaches
that enable dexterous manipulation through contact reasoning
where not all contacts are well characterized by classical rigid
body contact models. Here, we consider the case of a deforming
tool dexterously manipulating a rigid object. We propose a
hybrid learning and first-principles approach to the modeling of
simultaneous motion and force transfer of tools and objects. The
learned module is responsible for jointly estimating the rigid
object’s motion and the deformable tool’s imparted contact
forces. We then propose a Contact Quadratic Program to
recover forces between the environment and object subject to
quasi-static equilibrium and Coulomb friction. The results is a
system capable of modeling both intrinsic and extrinsic motions,
contacts, and forces during dexterous deformable manipulation.
We train our method in simulation and show that our method
outperforms baselines under varying block geometries and
physical properties, during pushing and pivoting manipulations,
and demonstrate transfer to real world interactions.

I. INTRODUCTION

Reasoning over the contact between a tool or end-effector
and a target object is crucial to enabling performant, safe,
and autonomous robotic manipulation. This extends naturally
to the case where the contacts are not all well represented by
rigid-body contact models. Deformable tools and objects are
commonly found in human environments [1] and the inherent
compliance may be advantageous for both maintaining con-
tact and preventing excessive forces while interacting with,
securing and controlling objects. Additionally, the advent
of deformable tactile sensors [2], [3], [4] and soft robot
manipulators [5] introduce new cases of non-rigid contact
into robotic manipulation.

In this work, we consider an elastically deformable tool
manipulating a rigid object, supported by the environment.
Manipulation of such a system presents two important chal-
lenges: First, the deformation of the tool and motion of the
rigid object are inherently linked - solving for one requires
reasoning about both. However, modeling the deformation
of the tool is challenging, due to the high-dimensional
and non-linear dynamics [6]. Second, the system is only
partially observable, and we must rely on sensing to intuit
deformations and contact forces.

To address these challenges, we propose a hybrid learn-
ing and first principles method for modeling the motion,
contacts, and forces on the tool and extrinsic object during
manipulation. Our method leverages learning to address the
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Fig. 1: We present a method that estimates motions and
forces during dexterous manipulation with a deformable tool
using a hybrid learning and first-principles approach.

complexity of the paired object motion and deformable tool
contacts. It then turns to first-principles and physical priors
to recover the extrinsic contacts and forces, enforcing quasi-
static motion and Coulomb friction. This allows our method
to overcome modeling challenges for the deformable object,
while exploiting physical priors for modeling efficiency. We
train our method on interactions between a tool and a variety
of object geometries and physical properties using simula-
tion [7]. We benchmark our method against baselines for
modeling block motion and for recovering the environment-
object forces. Finally, we deploy our model on a real robot,
demonstrating sim-to-real transfer.

II. RELATED WORK

To predict the motion of a rigid body, existing work has
investigated directly predicting SE3 transforms of objects [8],
[9] or predicting point cloud or mesh vertex motion [10],
[11]. Pfrommer et al. [12] propose to learn rigid body motion
by parameterizing inter-body signed distances and contact
Jacobians, enabling analytical physical simulation that can
reflect rigid contacts. Calandra et al. [13] recovers contact
forces and incorporates them into dynamics for a robot arm;
we recover contact forces and incorporate them into quasi-
static equilibrium for a rigid body. Other work seeks to
directly predict the motion of heterogenous materials by ap-
plying Graph Neural Networks [14] or implicit models [15],
[6]. In contrast, we avoid directly modeling the deformation
of the deforming tool and only focus on the contact forces
and rigid body motion.



Fig. 2: Architecture of our proposed method.

III. PROBLEM FORMULATION

We assume the following information from each part of
the system:

1) Object and Support Surface: We assume knowledge
of the mass me, the center of mass pe,CoM , the
friction between object and rigid supporting surface
µe, the geometry of the object, provided as a mesh
M = (V, E), and the geometry of the support surface.
Furthermore, we can track the motion of the rigid
object to receive the current object pose qe

t ∈ SE(2).
By our assumed knowledge of the environment geom-
etry, we additionally can use the known object pose
and geometry to recover the current contact locations
pc,1
t , ...,pc,K

t .
2) Tool: We assume access to a segmented partial point-

cloud of the deformable tool P tool, provided by our
sensors.

Given these inputs and assumptions, and the actions to
be taken at:t+H for some horizon H , where each action
is a planar translation and rotation, we wish to recover the
future poses of the object qe

t:t+H and all forces acting on
the object. We consider a simple contact representation for
the deformable-rigid contact: a summary contact point ptool

t

and force f tool
t , whose resulting wrench on the block is

equivalent to the actual and potentially extended contact. We
use the centroid of the contact between the tool and object
as ptool

t , which prevents ambiguity in the representation.
Finally, we wish to also recover the set of contact points
pc,1
t , ...,pc,K

t and forces f c,1
t , ...,f c,K

t between the rigid
object and the environment.

IV. METHOD

Our proposed method has two main components - a
learned module for predicting a) the object motion and b) the
contact location and forces between the deforming tool and
object, and a model-based optimization problem for recov-
ering the resulting frictional contacts with the environment.
An overview of our approach can be found in Fig. 2.

A. Jointly Learning Object Motion and Deformable-Rigid
Contact Interactions

An overview of our proposed learning architecture is
shown in Fig. 2. We encode information from the object

and the tool into a learned latent space. A latent dynamics
backbone then propagates the latent information provided
with the actions. Finally, we have multiple output heads that
decode the object motion and tool contact information from
the latent.

We input the partial pointcloud of the tool P tool
t using a

PointNet encoder [16]. We encode the geometry and current
pose of the extrinsic object by extracting the mesh vertices
V and transforming them to the tracked object location qe

t .
We use the environment geometry to detect which vertices
are contacting the surrounding environment and append
these binary contact indicators to each vertex location. We
use another PointNet encoder [16] to encode the resulting
unstructured point set V̂ e

t ∈ R|V |×4. We fuse the resulting
latent embeddings from the tool and rigid object, along with
the object mass me, object friction µe, and the gravity vector
fe,g
t . Given the input actions at:t+T , we rollout the dynamics

in the latent space [17].
The final learned components are two output networks

which take the latent state at a given time step and estimate
the motion. One MLP M is used to estimate the motion of
the object, given the current latent state, expressed as a delta
motion. A final MLP T is used to directly regress the tool
contact point ptool

t and force f tool
t . We assume access to a

labeled dataset with the labeled tool contact and force as well
as the delta extrinsic object motion, and train our method in
a supervised fashion.

B. Model-Based Estimation of Frictional Object-
Environment Contact

We can recover the set of K active contact points at a given
time step pc,1

t , ...,pc,K
t given our estimated object poses

and the known object and environment geometries. We now
aim to find the contact forces at those points f c,1

t , ...,f c,K
t .

Assuming the system is in quasi-static equilibrium, and given
the contact force applied by the tool f tool

t , we know the set of
environment forces must satisfy force balance and all forces
must satisfy Coloumb friction. To find our forces, we thus
propose the following Quadratic Program (QP) to find our
forces.



Fig. 3: Qualitative Results. Left: We compare our methods one-step predictions (solid) to the ground truth (semi-transparent)
object motion, tool force, and environment forces across several manipulation trajectories. Right: We show one-step
predictions for real robot executions.

(a) Object Position Error (↓) (b) Object Rotation Error (↓) (c) Extrinsic Force Error (↓)

Fig. 4: Baseline comparison of our method on test simulated interactions. For (a) and (b) we compare to a Rigid baseline
that predicts block motion as if rigidly attached to the tool. For (c) we compare our model-based optimization for extrinsic
contact recovery to directly predicting it from an MLP. Error bars indicate one half standard deviation.

min
f̂tool
t ,fc,1

t ,...,fc,K
t

(∆f tool
t )TU(∆f tool

t ) + ρ

K∑
k=1

(f c,k
t )TUf c,k

t

s.t. τ g
t + J tool

t f̂ tool
t +

K∑
k=1

Jc,k
t f c,k

t = 0

|f c,k,x
t | ≤ µef c,k,y

t k = 1, ...,K

0 ≤ f c,k,y
t k = 1, ...,K

(1)

Here, ∆f tool
t = f tool

t −f̂ tool
t . We introduce a new decision

variable f̂ tool
t which we use to achieve force balance. We

introduce a cost to minimize the difference between the
new decision variable and our original estimated tool force
f tool
t . We then solve for force balance (first constraint) and

Coloumb friction (second and third) on the environment
contacts. By using a new decision variable f̂ tool

t , we ensure
the QP is feasible, while finding forces that yield quasi-static
balance.

V. EXPERIMENTS

A. Training

We use the Drake simulator [18] to generate a labeled
dataset, as it supports deformable-rigid contacts [7]. We
attach a simple deformable tool to the end of a gripper.
We use a 46mm cube to match our real tool (Fig. 1) and
utilize Drake’s Finite Element Method simulation, setting

TABLE I: Real World 1-Step Object and Force Error (↓)

Metric Pos. Error (mm) Rot. Error (deg) Force Error (N)

Blk. 1 Pivot 0.364 (0.128) 0.262 (0.125) 0.745 (0.292)
Push 1.163 (0.420) 1.144 (0.613) 0.977 (0.445)

Blk. 2 Pivot 0.466 (0.196) 0.071 (0.054) 1.033 (0.382)
Push 2.044 (0.211) 0.069 (0.032) 1.180 (0.160)

Youngs Modulus to 1.1e4, Poisson’s ratio to 0.1, and density
to 30kg/m3. For the extrinsic object, we use three object
primitives from which we generate geometric variations: a
rectangle, triangle and pentagon. We train on 5000 pushing
and 5000 pivoting trajectories for each object type, per-
formed by a heuristic policy. We implement our network
in PyTorch and solve our CQP using CvxPy, and train over
a horizon of length 4.

B. Simulated Results

We demonstrate the performance of our model on a test
simulation dataset of 500 push and 500 pivot trajectories for
each object type.

We report our method’s performance over a prediction
horizon of three steps for tool contact point and contact
force accuracy across all our simulated test trajectories in
Fig. 5. For all interactions and across our prediction horizon,
our method showed the ability to accurately estimate future
contact points between the deforming tool and extrinsic
block, to within 6mm on average (against a tool of size



Fig. 5: Tool Contact Force (blue) and Contact Point Location
(orange) error for our proposed model, plotted by prediction
horizon time step. Error bars indicate one half standard
deviation.

46mm), and showed the ability to estimate future contact
forces to within 0.2N on average.

To benchmark our method’s object motion performance,
we introduce a Rigid baseline which assumes that the block
moves “rigidly” with respect to the tool. In Fig. 4a and 4b we
show that our method outperformed the Rigid baseline, with
sub-millimeter position accuracy and less than 0.5 degrees of
rotational error on average across the full prediction horizon.

To benchmark our extrinsic force modeling, we create
a variation which replaces the CQP with a learned MLP
following the form of our other network output heads. In
particular, it takes in the latent state lt and directly predicts
the contact forces f c,1

t , ...,f c,K
t . In Fig. 4c, we see that our

proposed method outperforms the baseline, yielding the best
average force prediction across all scenarios. Our method
consistently performed to within 0.08N of error on average,
across the prediction horizon. Our results suggests that our
proposed CQP method for recovering environment forces
outperforms direct learning.

Finally, Fig. 3 (Left) shows qualitative examples of our
methods predictions on simulated data with different objects
and actions (pivoting and pushing).

C. Real Robot Results

We demonstrate our methods performance on a Franka
Emika Panda robot and interact with two rectangular objects.
We collect 5 push and 5 pivot trajectories with each object.
We mount an ATI Gamma Force/Torque sensor under the
tabletop. This allows us to compare the cumulative force
experienced by the table via the extrinsic contacts, which
we compare to our predicted extrinsic contacts.

In Table I, we show our one-step object motion prediction
and extrinsic force prediction on the real data. Despite noisy
sensor information, we are able to predict object motion to
within roughly 2mm and 2 degrees error. Our extrinsic cu-
mulative contact prediction is within roughly 1N on average.
In Fig. 3 (Right), we show full qualitative predictions.

D. Force Tracking

Regulating force on the extrinsic object can be important
in cases where the object or environment are fragile. Here,
we demonstrate force tracking using our proposed extrinsic

Fig. 6: Our pivot force tracking task, with the decision
variable d shown in leftmost frame.

Fig. 7: We plot, over five trials, the evolution of the absolute
force magnitude error as a function of the trajectory step. Our
method is able to better track the desired force, compared to
a method without force feedback executing a similar pivot.

contact estimates. We execute a pivoting motion, pivoting
around the contact point furthest from the robot. We setup
a simple greedy controller which can adjust the arc length
d for the next step, thereby allowing it to press harder
or release as it pivots. We use our proposed model and
predict the motion and forces for the sampled actions (with
a single-action horizon). We then select the action with the
resulting cumulative force magnitude closest to the desired
force setting ν. We set the target force magnitude ν to be the
gravitation force given the mass of the block plus 1.5N. We
use the F/T sensor mounted on the environment to determine
approximately how well we tracked the desired force. An
example execution is shown in Fig. 6. We show tracking
performance over five trials against an open loop method in
Fig. 7.

VI. CONCLUSION

We present a method capable of jointly recovering ob-
ject motion and intrinsic/extrinsic contact information dur-
ing dexterous deformable manipulations. We found that
our hybrid learning and first-principles approach outper-
formed purely learning methods when recovering environ-
ment forces. In future work, we hope to leverage this work
for the planning of dexterous deformable motion, where we
aim to utilize force estimates to reason about contact modes
and force targets.
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