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Fig. 1: PhysTwin takes sparse videos (three camera views) of deformable objects under interaction as input and reconstructs a simulatable
digital twin with complete geometry, high-fidelity appearance, and accurate physical parameters. This enables multiple applications, such
as real-time interactive simulation using keyboards and robotic teleoperation devices, as well as model-based robot planning.

Abstract— Creating a physical digital twin of a real-world
object has immense potential in robotics, content creation, and
XR. In this paper, we present PhysTwin, a novel framework
that uses sparse videos of dynamic objects under interaction to
produce a photo- and physically realistic, real-time interactive
virtual replica. Our approach centers on two key components:
(1) a physics-informed representation that combines spring-mass
models for realistic physical simulation, generative shape models
for geometry, and Gaussian splats for rendering; and (2) a novel
multi-stage, optimization-based inverse modeling framework that
reconstructs complete geometry, infers dense physical properties,
and replicates realistic appearance from videos. Our method
integrates an inverse physics framework with visual perception
cues, enabling high-fidelity reconstruction even from partial,
occluded, and limited viewpoints. PhysTwin supports modeling
various deformable objects, including ropes, stuffed animals,
cloth, and delivery packages. Experiments show that PhysT-
win outperforms competing methods in reconstruction, render-
ing, future prediction, and simulation under novel interactions.
We further demonstrate its applications in interactive real-time
simulation and model-based robotic motion planning. Project
Page: https://jianghanxiao.github.io/phystwin-web/

I. INTRODUCTION

The construction of interactive digital twins is essential
for modeling the world and simulating future states, with
applications in virtual reality, augmented reality, and robotic
manipulation. A physically realistic digital twin (PhysTwin)
should accurately capture the geometry, appearance, and
physical properties of an object, allowing simulations that
closely match observations in the real world. However,
constructing such a representation from sparse observations
remains a significant challenge.

In this work, we aim to build an interactive PhysTwin
from sparse-viewpoint RGB-D video sequences Fig. 2,
capturing object geometry, non-rigid dynamic physics, and
appearance for realistic physical simulation and rendering.
We model deformable object dynamics with a spring-mass-
based representation, enabling efficient physical simulation
and handling a wide range of common objects, such as ropes,
stuffed animals, cloth, and delivery packages. To address the
challenges posed by sparse observations, we leverage shape
priors and motion estimation from advanced 3D generative
models [62] and vision foundation models [46, 23, 48] to
estimate the topology, geometry, and physical parameters of
our physical representation. Since some physical parameters
(such as topology-related properties) are non-differentiable
and optimizing them efficiently is non-trivial, we design
a hierarchical sparse-to-dense optimization strategy. This
strategy integrates zero-order optimization [18] for non-
differentiable topology and sparse physical parameters (e.g.,
collision parameters and homogeneous spring stiffness), while
employing first-order gradient-based optimization to refine
dense spring stiffness and further optimize collision parame-
ters. For appearance modeling, we adopt a Gaussian blending
strategy, initializing static Gaussians from sparse observations
in the first frame using shape priors and deforming them with
a linear blending algorithm to generate realistic dynamic
appearances.

Our inverse modeling framework effectively constructs
interactive PhysTwin from videos of objects under interaction.
We create a real-world deformable object interaction dataset
and evaluate our method on three key tasks: reconstruction
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Fig. 2: Overview of Our PhysTwin Framework. We present an overview of our PhysTwin framework, where the core representation
includes geometry, topology, physical parameters (associated with springs and contacts), and Gaussian kernels. To optimize PhysTwin, we
minimize the rendering loss and the discrepancy between simulated and observed geometry/motion. The rendering loss optimizes the
Gaussian kernels, while the geometry and motion losses refine the overall geometry, topology, and physical parameters in PhysTwin.

and resimulation, future prediction, and generalization to
unseen interactions. Both quantitative and qualitative results
demonstrate that our reconstructed PhysTwin aligns accurately
with real-world observations, achieves precise future predic-
tions, and generates realistic simulations under diverse unseen
interactions. Furthermore, the high computational efficiency
of our physics simulator enables real-time dynamics and
rendering of our constructed PhysTwin, facilitating multiple
applications, including real-time interactive simulation and
model-based robotic motion planning.

II. EXPERIMENTS

In this section, we evaluate the performance of our
PhysTwin framework across three distinct tasks involving
different types of objects. Our primary objective is to address
the following three questions: (1) How accurately does our
framework reconstruct and resimulate deformable objects and
predict their future states? (2) How well does the constructed
PhysTwin generalize to unseen interactions? (3) What is the
utility of PhysTwin in downstream tasks?

A. Experiment Settings

Dataset. We collect a dataset of RGBD videos capturing
human interactions with various deformable objects with
different physical properties, such as ropes, stuffed animals,
cloth, and delivery packages. Three RealSense-D455 RGBD
cameras are used to record the interactions. Each video is 1 to
10 seconds long and captures different interactions, including
quick lifting, stretching, pushing, and squeezing with one or
both hands. We collect 22 scenarios encompassing various
object types, interaction types, and hand configurations. For
each scenario, the RGBD videos are split into a training set
and a test set following a 7:3 ratio, where only the training
set is used to construct PhysTwin. We manually annotate
9 ground-truth tracking points for each video to evaluate
tracking performance with the semi-auto tool introduced
in [7].

Tasks. To assess the effectiveness of our PhysTwin
framework and the quality of our constructed PhysTwin, we
formulate three tasks: (1) Reconstruction & Resimulation;
(2) Future Prediction; and (3) Generalization to Unseen
Actions.

For the Reconstruction & Resimulation task, the objective
is to construct PhysTwin such that it can accurately reconstruct
and resimulate the motion of deformable objects given the
actions represented by the control point positions.

For the Future Prediction task, we aim to assess whether
PhysTwin can perform well on unseen future frames during
its construction.

For the Generalization to Unseen Interactions task, the
goal is to assess whether PhysTwin can adapt to different
interactions. To evaluate this, we construct a generalization
dataset consisting of interaction pairs performed on the same
object but with varying motions, including differences in hand
configuration and interaction type.

Baselines. To the best of our knowledge, there is currently
no existing work that demonstrates good performance across
all three tasks. Therefore, we select two main research
directions as baselines and further augment them to match
the tasks in our setting (full details in the supplementary).

The first baseline we consider is a physics-based simulation
method for identifying the material properties of deformable
objects, Spring-Gaus [72]. Their work has demonstrated
strong capabilities in reconstruction, resimulation, and future
prediction in its original setting. However, their framework
does not support external control inputs, so we augment it
with additional control capabilities.

The second baseline is a learning-based simulation ap-
proach, GS-Dynamics [69], which employs a GNN-based
neural dynamics model to learn system dynamics directly
from partial observations. In their original setting, video
preprocessing with Dyn3DGS [34] is required to obtain
tracking information. For a fairer comparison, we strengthened



TABLE I: Quantitative Results on Reconstruction & Resimulation and Future Prediction. We compare the performance of our
method with two prior work, GS-Dynamics [69] and Spring-Gaus [72], on two tasks: reconstruction & resimulation and future prediction.
Our PhysTwin framework consistently outperforms the baselines across all metrics.

Task Reconstruction & Resimulation Future Prediction

Method CD | Track Error | IoU % 1t PSNR{1 SSIM{ LPIPS| CDJ] Track Error] IoU %1t PSNR1 SSIM T LPIPS |
Spring-Gaus [72] 0.041 0.050 57.6 23.445 0.928 0.102  0.062 0.094 46.4 22.488 0.924 0.113
GS-Dynamics [69]  0.014 0.022 72.1 26.260 0.940 0.052  0.041 0.070 49.8 22.540 0.924 0.097
PhysTwin (Ours) 0.005 0.009 84.4 28.214 0.945 0.034  0.012 0.022 72.5 25.617 0.941 0.055
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Fig. 3: Qualitative Results on Reconstruction & Resimulation and Future Prediction. We visualize the rendering results of different
methods on two tasks. For the reconstruction & resimulation task, our method achieves a better match with the observations. For the future
prediction task, our method accurately predicts the future state of the objects. In contrast, the baselines fail in most cases: GS-Dynamics [69]
tends to remain static, while Spring-Gauss [72] frequently causes the physical model to crash.

TABLE II: Quantitative Results on Generalization to Unseen
Interactions. We compare our method with GS-Dynamics [69] on
generalization to unseen interactions. Both methods are trained on
the same video with a specific interaction and tested on unseen
interactions. Our method achieves significantly better results.

Method CD ] Track Error | IoU %1 PSNR1 SSIM1 LPIPS |
GS-Dynamics [69]  0.029 0.038 63.4 25.053 0.934 0.067
PhysTwin (Ours) 0.013 0.018 72.18 26.199 0.938 0.047

it by using our 3D-lifting tracker based on CoTracker3 [23],
which provides more efficient and accurate supervision for
training the neural dynamics model used by GS-Dynamics.

Evaluation. To better understand whether our prediction
matches the observations, we evaluate predictions in both
3D and 2D. For the 3D evaluation, we use the single-
direction Chamfer Distance (partial ground truth with our
full-state prediction) and the tracking error (based on our
manually annotated ground-truth tracking points). For the 2D
evaluation, we assess image quality using PSNR, SSIM, and
LPIPS [70], and silhouette alignment using IoU. We perform
2D evaluation only at the center viewpoint due to optimal
visibility of objects, with metrics averaged across all frames
and scenarios. Specially, for the Spring-Gaus [72] baseline,
its optimization process is unstable due to inaccurate physics
modeling. Therefore, we report the above metrics only for
its successful cases.

B. Results

To assess the performance of our framework and the
quality of our constructed PhysTwin, we compare with
two augmented baselines across three task settings. Our
quantitative analysis reveals that the PhysTwin framework
consistently outperforms the baselines across various tasks.

Reconstruction & Resimulation. The quantitative results
in Tab. I Reconstruction & Resimulation column demonstrate
the superior performance of our PhysTwin method over
baselines. Our approach significantly improves all evaluated
metrics, including Chamfer Distance, tracking error, and 2D
IoU, confirming that our reconstruction and resimulation align
more closely with the original observations. This highlights
the effectiveness of our model in learning a more accurate
dynamics model under sparse observations. Additionally,
rendering metrics show that our method produces more
realistic 2D images, benefiting from the Gaussian blending
strategy and enhanced dynamic modeling. Fig. 3 further
provides qualitative visualizations across different objects,
illustrating precise alignment with original observations.
Notably, our physics-based representation inherently improves
point tracking. After physics-constrained optimization, our
tracking surpasses the original CoTracker3 [23] predictions
used for training, achieving better alignment after global
optimization (See supplement for more details).
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Fig. 4: Qualitative Results on Generalization to Unseen Interactions. We visualize the simulation of a deformable object under unseen
interactions using our method and GS-Dynamics [69]. The leftmost image shows the interaction used to train the dynamics models, while
the images on the right demonstrate their generalization to unseen interactions. Our PhysTwin significantly outperforms prior work.
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Fig. 5: Applications of our PhysTwin. Our constructed PhysTwin supports a variety of tasks, including real-time interactive simulation,
which can accept input from either a keyboard or a robot teleoperation setup. Meanwhile, PhysTwin also enables model-based robot
planning to accomplish tasks such as lifting a rope into some specific configuration.

Future Prediction. Tab. I, in the Future Prediction column,
demonstrates that our method achieves superior performance
in predicting unseen frames, excelling in both dynamics
alignment and rendering quality. Fig. 3 further provides
qualitative results, illustrating the accuracy of our predictions
on unseen frames.

Generalization to Unseen Interactions. We also evaluate
the generalization performance to unseen interactions. Our
dataset includes transfers from one interaction (e.g., single
lift) to significantly different interactions (e.g., double stretch).
We directly use our constructed PhysTwin and leverage our
registration pipeline to align it with the first frame of the target
case. Fig. 4 shows that our method closely matches the ground
truth observations in terms of dynamics. Quantitative results
further demonstrate the robustness of our method across differ-
ent actions. In contrast, the neural dynamics model struggles
to adapt to environmental changes and diverse interactions as
effectively as our approach. Moreover, in unseen interaction
scenarios, our method achieves performance comparable to
that on the future prediction task, highlighting the robustness

and generalization capability of our constructed PhysTwin.

C. Application

The efficient forward simulation capabilities of our Spring-
Mass simulator, implemented using Warp [37], enable a
variety of downstream applications. Fig. 5 showcases key
applications enabled by our PhysTwin: (1) Interactive Sim-
ulation: Users can interact with objects in real time using
keyboard controls, either with one or both hands. The system
also supports real-time simulation of an object’s future state
during human teleoperation with robotic arms. This feature
serves as a valuable tool for predicting object dynamics during
manipulation. (2) Model-Based Robotic Planning: Owing to
the high fidelity of our constructed PhysTwin, it can be used
as a dynamic model in planning pipelines. By integrating
it with model-based planning techniques, we can generate
effective motion plans for robots to complete a variety of
tasks.
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APPENDIX

In the supplement, we provide additional details of our
PhysTwin framework, more qualitative results across different
tasks, and further analysis of our methods. All the videos
showcasing our results on various instances, interactions, and
tasks are available on our website.

A. Related Works

Dynamic Scene Reconstruction. Dynamic scene recon-
struction aims to recover the underlying representation of
dynamic scenes from inputs like depth scans [6, 26], RGBD
videos [38], or monocular or multi-view videos [1, 24, 31,
34, 39, 40, 43, 58, 61, 67, 68, 56, 5]. Recent advancements
in dynamic scene modeling have involved the adaptation of
novel scene representations, including Neural Radiance Fields
(NeRF) [16, 8, 27, 29-31, 39, 40, 43, 55, 58, 17, 2, 13, 14,
30, 61, 56, 5, 41] and 3D Gaussian splats [34, 59, 66, 20, 24,
33, 68, 65, 10]. D-NeRF [43] extends a canonical NeRF on
dynamic scenes by optimizing a deformable field. Similarly,
Deformable 3D-GS [66] optimizes a deformation field of each
Gaussian kernel. Dynamic 3D-GS [34] optimizes the motion
of Gaussian kernels for each frame to capture scene dynamics.
4D-GS [59] modulates 3D Gaussians with 4D neural voxels
for dynamic multi-view synthesis. Although these methods
achieve high-fidelity results in dynamic multi-view synthesis,
they primarily focus on reconstructing scene appearance and
geometry without capturing real-world dynamics, limiting
their ability to support action-conditioned future predictions
and interactive simulations.

Physics-Based Simulation of Deformable Objects. An-
other line of work incorporates physical simulators to perform
system identification of physical parameters during recon-
struction. Earlier methods relied on pre-scanned static objects
and required clean point cloud observations [57, 44, 9, 47,
15, 19, 21, 35]. Most recent approaches build upon SDF [45],
NeRF [12, 27, 3] or Gaussian Splatting [71, 72, 63, 22] to
support more flexible physical digital twin reconstruction. Sev-
eral works [12, 22, 63] manually specify physics parameters,
resulting in a mismatch between the simulation and real-world
video observations. Other works [71, 27, 3, 72, 45] attempt
to estimate physical parameters from videos. However, they
are often constrained to synthetic data, limited motion, or
the need for dense viewpoints to accurately reconstruct static
geometry, limiting their practical applicability. The closest
related work to ours is Spring-Gaus [72], which also utilizes
a 3D Spring-Mass model for learning from videos. However,
their physical model is overly regularized and violates real-
world physics, lacking momentum conservation and realistic
gravity. Moreover, Spring-Gaus requires dense viewpoint
coverage to reconstruct the full geometry at the initial state,
which is impractical in many real-world settings. The motions
are also limited to tabletop collisions and lack action inputs,
making Spring-Gaus unsuitable as a general dynamics model
for downstream applications.

Learning-Based Simulation of Deformable Objects.
Analytically modeling the dynamics of deformable objects is
challenging due to the high complexity of the state space and

the variability of physical properties. Recent works [60, 36,
64, 11, 4] have chosen to use neural network-based simulators
to model object dynamics. Specifically, graph-based networks
effectively learn the dynamics of various types of objects
such as plasticine [52, 51], cloth [42, 32], fluid [28, 49],
and stuffed animals [69]. GS-Dynamics [69] attempted to
learn object dynamics directly from real-world videos using
tracking and appearance priors from Dynamic Gaussians [34],
and generalized well to unseen actions. However, these
learned models need extensive training samples and are often
limited to specific environments with limited motion ranges.
In contrast, our method requires only one interaction trial
while achieving a broader range of motions.

Spring-mass models are widely used for simulating de-
formable objects due to their simplicity and computational
efficiency. A deformable object is represented as a set of
spring-connected mass nodes, forming a graph structure
G = (V,€&), where V is the set of mass points and & is
the set of springs. Each mass node ¢ has a position x; € R3
and velocity v; € R3, which evolve over time according
to Newtonian dynamics. Springs are constructed between
neighboring nodes based on a predefined topology, defining
the elastic structure of the object.

The force on node 7 is the result of the combined effects
of adjacent nodes connected by springs:

Fi= ) FIM L FSP L F (M
(i,5)€€

where the spring force and dashpot damping force between
nodes i and j are given by F”"™ = ki;(llx; — x| —
lz])ﬁ and F?’a;hpm = —v(v; — v;), respectively. Here,
ki; 1s the spring stiffness, /;; is the rest length, and + is the
dashpot damping coefficient. The external force F$*' accounts
for factors such as gravity, collisions, and user interactions.
The spring force restores the system to its rest shape, while
the dashpot damping dissipates energy, preventing oscillations.
For collisions, we use impulse-based collision handling when
two mass points are very close, including collisions between
the object and the collider, as well as between two object
points.

The spring-mass model updates the system state with a
dynamic model X;11 = fq.g,(Xt,a¢) by applying explicit
Euler integration to both velocity and position. More formally,
for all i, vitt =6 (vt + At 7% ;o oxiT =xt AVt
where X; represents the system state at time ¢, and J
represents the drag damping. In this formulation, o denotes
all physical parameters of the spring-mass model, including
spring stiffness, collision parameters, and damping. It also
encompasses the parameters related to the control interaction.
Gy represents the “canonical” geometry and topology for the
spring-mass system', and a; represents the action at time ¢.

B. Method

In this section, we formulate the construction of PhysTwin
as an optimization problem. We then present our two-stage

!In practice, we use the first-frame object state as the canonical state.



strategy, where the first stage addresses the physics-related
optimization, followed by the appearance-based optimization
in the second stage. Finally, we demonstrate the capability
of our framework to perform real-time simulation using the
constructed PhysTwin.

1) Problem Formulation: Given three RGBD videos of
a deformable object under interaction, our objective is to
construct a PhysTwin model that captures the geometry,
appearance, and physical parameters of the object over time.
At each time frame ¢, we denote the RGBD observations
from the i-th camera as O, ;, where O = (I, D) represents
the RGB image I and depth map D.

The goal of our optimization problem is to minimize the
discrepancy between the predicted observation Ot,i and the
actual observation Oy ;. The predicted observation is derived
by projecting and rendering the predicted state X, onto
images through a function gy, where 6 encodes the appearance
of the objects represented by Gaussian splats. The 3D state
X, evolves over time according to the Spring-Mass model,
which captures the deformable object’s dynamics and updates
the state using the explicit Euler integration method. The
optimization problem is formulated as:

min C(Ot,i7 Otﬂ‘)
0.0 )

s.t. Ot,i = go(Xy, 1), X4 = fa,g(Xt,at),

where «, Gy, 0 captures the physics, geometry, topology and
appearance parameters (App. A); the cost function quantifies
the difference between the predicted observation (A)m and the
actual observation O, ;. This cost function is decomposed
into three components: C' = Cgeometry + Cmotion + Crender,
each capturing the discrepancy between the inferred system
states and the corresponding observations from 3D geometry,
3D motion tracking, and 2D color, respectively (we defer the
details of each cost component to Sec. B.2.a and Sec. B.2.b).
The function gy is the observation model, describing the
projection from the predicted state to the image plane and
rendering image-space sensory observation from the i-th
camera. The f, s models the dynamic evolution of the
object’s state under the Spring-Mass model (App. A).

2) PhysTwin Framework: Given the complexity of the
overall optimization defined in Eq. 2, our PhysTwin frame-
work decomposes it into two stages. The first stage focuses on
optimizing the geometry and physical parameters, while the
second stage is dedicated to optimizing the appearance-related
parameters.

a) Physics and Geometry Optimization: As outlined in
our optimization formulation in App. B.1, the objective is to
minimize the discrepancy between the predicted observation
Ot,i and the actual observation Oy ;. First, we convert the
depth observations D; at each time frame ¢ into the observed
partial 3D point cloud X;. In the first stage, we consider the
following formulation for the optimization:

(Ogenmetry (Xf ) Xt ) + Cmotion (Xf ) Xt ))

min
a,Go 7

S.t. Xt+1 = foé,go (Xt; at),

3)

where the Cyeomery function quantifies the single-direction
Chamfer distance between the partially observed point cloud
X, and the inferred state Xt, and Choion quantifies the track-
ing error between the predicted point X! and its corresponding
observed tracking x!. The observed tracking is obtained using
the vision foundation model CoTracker3 [23], followed by
lifting the result to 3D via depth map unprojection.

There are three main challenges in the first-stage opti-
mization: (1) partial observations from sparse viewpoints;
(2) joint optimization of both the discrete topology and
physical parameters; and (3) discontinuities in the dynamic
model, along with the long time horizon and dense parameter
space, which make continuous optimization difficult. To
address these challenges, we handle the geometry and
other parameters separately. Specifically, we first leverage
generative shape initialization to obtain the full geometry,
then employ our two-stage sparse-to-dense optimization to
refine the remaining parameters.

Generative Shape Prior. Due to partial observations,
recovering the full geometry is challenging. We leverage
a shape prior from the image-to-3D generative model TREL-
LIS [62] to generate a complete mesh conditioned on a
single RGB observation of the masked object. To improve
mesh quality, the input to TRELLIS is first enhanced using
a super-resolution model [48] that upscales the segmented
foreground (obtained via Grounded-SAM?2 [46]). While the
resulting mesh corresponds reasonably well with the camera
observation, we can still observe inconsistencies in scale,
pose, and deformation.

To address this, we design a registration module that
uses 2D matching for scale estimation, rigid registration,
and non-rigid deformation. A coarse-to-fine strategy first
estimates initial rotation via 2D correspondences matched
using SuperGlue [50], followed by refinement with the
Perspective-n-Point (PnP) [25] algorithm. We resolve scale
and translation ambiguities by optimizing the distances
between matched points in the camera coordinate system.
After applying these transformations, the objects are aligned in
pose, with some deformations handled by as-rigid-as-possible
registration [53]. Finally, ray-casting alignment ensures that
observed points match the deformed mesh without occlusions.

These steps yield a shape prior aligned with the first-frame
observations, which serves as a crucial initialization for the
inverse physics and appearance optimization stages.

Sparse-to-Dense Optimization. The Spring-Mass model
consists of both the topological structure (i.e., the connectivity
of the springs) and the physical parameters defined on the
springs. As mentioned in App. A, we also include control
parameters to connect springs between control points and
object points, defined by a radius and a maximum number of
neighbors. Similarly, for topology optimization, we employ a
heuristic approach that connects nearest-neighbor points, also
parameterized by a connection radius and a maximum number
of neighbors, thereby controlling the density of the springs. To
extract control points from video data, we utilize Grounded-
SAM?2 [46] to segment the hand mask and CoTracker3 [23]
to track hand movements. After lifting the points to 3D, we



apply farthest-point sampling to obtain the final set of control
points.

All the aforementioned components constitute the parame-
ter space we aim to optimize. The two main challenges are: (1)
some parameters are non-differentiable (e.g., the radius and
maximum number of neighbors); and (2) to represent a wide
range of objects, we model dense spring stiffness, leading to
a parameter space with tens of thousands of springs.

To address these challenges, we introduce a hierarchical
sparse-to-dense optimization strategy. Initially, we employ
zero-order, sampling-based optimization to estimate the
parameters, which naturally circumvents the issue of dif-
ferentiability. However, zero-order optimization becomes
inefficient when the parameter space is too large. Therefore,
in the first stage, we assume homogeneous stiffness, allowing
the topology and other physical parameters to achieve a
good initialization. In the second stage, we further refine
the parameters using first-order gradient descent, leveraging
our custom-built differentiable spring-mass simulator. This
stage simultaneously optimizes the dense spring stiffness and
collision parameters.

Beyond the optimization strategy, we incorporate additional
supervision by utilizing tracking priors from vision foundation
models. We lift the 2D tracking prediction into 3D to obtain
pseudo-ground-truth tracking data for the 3D points, which
forms a crucial component of our cost function as mentioned
in Eq. (3).

By integrating our optimization strategy with a cost func-
tion that leverages additional tracking priors, our PhysTwin
framework can effectively and efficiently model the dynamics
of diverse interactable objects from videos.

b) Appearance Optimization: For the second-stage
appearance optimization, to model object appearance, we
construct a set of static 3D Gaussian kernels parameterized
by 6, with each Gaussian defined by a 3D center position
11, a rotation matrix represented by a quaternion g € SO(3),
a scaling matrix represented by a 3D vector s, an opacity
value «, and color coefficients c¢. We optimize 6 here via

' Lo L) st Ly = go(Xy,i
rnelnzcrender(]:z,ty z,t) S.t N gG(XhZ)» (4)

ti

where X, is the optimized system states at time ¢, ¢ is the
camera index, and I, ;, ii,t are the ground truth image and
rendered image from camera view ¢ at time ¢, respectively.
Clender computes the £ loss with a D-SSIM term between
the rendering and ground truth image. For simplicity, we set
t = 0 to optimize appearance only at the first frame. We
restrict the Gaussian shape to be isotropic to prevent spiky
artifacts during deformation.

To ensure realistic rendering under deformation, we need
to dynamically adjust each Gaussian at each timestep ¢ based
on the transition between states Xt and Xt+1- To achieve
this, we adopt a Gaussian updating algorithm using Linear
Blend Skinning (LBS) [54, 69, 20], which interpolates the
motions of 3D Gaussians using the motions of neighboring
mass nodes. Please refer to the supplementary for details.

Pseudo Track (CoTracker3) PhysTwin (Ours)

Fig. 6: Visualization of Tracking Results. We compare the tracking
results produced by our PhysTwin with the raw tracking results from
CoTracker3 [23]. Our PhysTwin achieves more natural and smoother
movement compared to the raw predictions from CoTracker3.

3) Capabilities of PhysTwin: Our constructed PhysTwin
supports real-time simulation of deformable objects under
various motions while maintaining realistic appearance. This
real-time, photorealistic simulation enables interactive explo-
ration of object dynamics.

By introducing control points and dynamically connecting
them to object points via springs, our system can simulate
diverse motion patterns and interactions. These capabilities
make PhysTwin a powerful representation for real-time inter-
active simulation and model-based robotic motion planning,
which are further described in Sec. II-C.

C. Additional Experimental Details

Due to the page limit in the main paper, we provide
additional qualitative results on different instances under
various interactions, as well as further analysis experiments.

Tasks. PhysTwin is constructed solely from the training
set of each data point, and its performance is evaluated
based on how well it matches the original video within
the test set. For the generalization task, we create a dataset
consisting of interaction pairs performed on the same object.
For example, we construct PhysTwin for a sloth toy based on
a scenario where it is lifted with one hand and then evaluate
its performance in a different scenario where its legs are
stretched using both hands. The dataset includes 11 such
pairs, and since each pair allows for two possible transfer
directions (i.e., from one interaction to another or vice versa),
this results in a total of 22 generalization experiments. In this
task, PhysTwin is still constructed using only the training
set of the source interaction but is applied across the entire
sequence of the target interaction.

Qualitative Results. We present more qualitative results
for different instances across various interactions on our
three tasks: reconstruction & resimulation, future prediction
(Fig. 7), and generalization to unseen interactions (Fig. 8). All
results demonstrate the superior performance of our method
compared to prior work.

Different Viewpoints. Fig. 9 presents the visualization
of the rendering results from different viewpoints, demon-
strating the robustness of our PhysTwin in handling various
viewpoints.

Ablation Study on Hierarchical Optimization. To better
understand the importance of our hierarchical sparse-to-dense
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TABLE III: Ablations of Our Sparse-to-Dense Optimization. To better understand our optimization process, we conduct ablation
experiments comparing results with only zero-order optimization or first-order optimization. The results demonstrate that our sparse-to-dense
optimization strategy is effective in obtaining the most accurate physical parameters.

Task Reconstruction & Resimulation Future Prediction

Method CD| Track Error] IoU % 1t PSNRt SSIMt LPIPS| CDJ| Track Error] IoU % 1 PSNR1T SSIM1 LPIPS |

Zero-order Only 0.007 0.012 80.2 27.409 0.943 0.039 0.014 0.025 69.2 25.008 0.938 0.061

First-order Only 0.008 0.012 82.7 27913 0.944 0.037  0.019 0.034 65.7 24.572 0.936 0.067

PhysTwin (Ours)  0.005 0.009 84.4 28.214 0.945 0.034 0.012 0.022 72.5 25.617 0.941 0.055
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"Fig. 8: Additional Qualitative Results on Generalization to Unseen Interactions.

optimization strategy, we conduct ablation studies with two
variants: one using only zero-order optimization and the other
using only first-order optimization. These experiments are
performed on both the reconstruction & resimulation task
and the future prediction task. Tab. III presents the results
of different variants. Our complete pipeline achieves the
best performance across both tasks. The variant with only
zero-order optimization fails to capture fine-grained material
properties, limiting its ability to represent different objects.
On the other hand, the variant with only first-order dense
optimization neglects the optimization of non-differentiable
parameters, such as the spring connections. The default
connections fail to accurately model the real object structure,
and the connection distances between control points and
object points cannot be effectively handled with a fixed
initialization value.

Tracking Results. Fig. 6 shows the visualization of our
tracking results and the pseudo-GT tracking results from
CoTracker3 [23]. Even though our PhysTwin is optimized
with noisy GT tracking, our model achieves much better and
smoother tracking results during both the reconstruction &
resimulation and future prediction tasks.

Data Efficiency Experiment. To further analyze the
performance difference between our method and the GNN-
based approach, we collected 29 additional data points on
the same motion (double-hand stretching and folding rope),
bringing the total to 30 data points for training the neural
dynamics model. In contrast, our method is trained using only
1 data point. The results show that GS-Dynamics does not
show a performance boost even with 30 times more data than
our method. This indicates that their approach is data-hungry,
whereas our method demonstrates significantly better data
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Fig. 9: Qualitative Results on Reconstruction & Resimulation and Future Prediction with different viewpoints.

efficiency in learning a useful dynamics model. Even with
30 times more data, the learning-based method still struggles
to capture precise dynamics as effectively as our approach.

Our work takes an important step towards constructing
an effective physical digital twin for deformable objects
from sparse video observations. Unlike existing methods that
primarily focus on geometric reconstruction, our approach
integrates physical properties, enabling accurate resimulation,
future prediction, and generalization to unseen interactions.
Despite using three RGBD views in our current setup, our
framework is inherently flexible and can extend to even
sparser observations. With appropriate priors, a single RGB
video could serve as a promising and scalable alternative,

making our approach more applicable to in-the-wild scenar-
ios. Furthermore, while our framework optimizes physical
parameters based on a single type of interaction, expanding
to multiple action modalities could further enhance the
estimation of an object’s intrinsic properties. Learning from
a broader range of interactions may reveal richer physical
characteristics and improve robustness. Beyond reconstruction
and resimulation, our method opens up exciting possibil-
ities for downstream applications, particularly in robotics.
By providing a structured yet efficient digital twin, our
approach significantly simplifies real-to-sim transfer, reducing
the reliance on domain randomization for reinforcement
learning. Additionally, the high-speed simulation and real-



time rendering capabilities of our framework pave the way
for more effective model-based robotic planning. By bridging
the gap between perception and physics-based simulation,
our method lays a solid foundation for future advancements
in both computer vision and robotics.



