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Abstract— In complex scenarios where typical pick-and-place
techniques are insufficient, often non-prehensile manipulation
can ensure that a robot is able to fulfill its task. We build on
prior reinforcement learning methods for planar pushing by
introducing location-based attention, enabling robust, collision-
free manipulation in cluttered, dynamic scenes. Unlike previous
approaches, our method needs no global path planning and con-
siders target orientation. Simulated and real-world experiments
with a KUKA iiwa arm validate the effectiveness of our policy.

I. INTRODUCTION

Incorporating non-prehensile manipulation into a robot’s
skill set enhances its versatility beyond pick-and-place tech-
niques [1], [2]. This capability allows robots to manipulate a
wider range of ungraspable objects and access to otherwise
unreachable grasping configurations through their reposition-
ing and reorientation [3].

In cluttered environments, avoiding obstacles introduces
a new dimension of complexity to non-prehensile manip-
ulation, requiring advanced long-horizon spatial reasoning
that integrates collision constraints while maintaining re-
sponsiveness to dynamic and unpredictable elements [4].
Therefore, a real-time scene understanding is essential to
predict interactions, generate feasible trajectories, and adapt
to both static and dynamic components in the scene. For
example, Fig. 1 shows a scenario in which the robot pushes a
cake to a person in order for them to reach it, while avoiding
the other items on the table.

Current research predominantly focuses on precise object
pushing in free space [5], [6] or on cluttered surfaces without
restricting interactions between the objects [7], [8]. Only few
studies consider pushing in cluttered environments while
incorporating collision constraints [9], [10]. However, they
rely on pre-computed path guidance and scale poorly to
more complex scenarios [11]. Recently, Del Aguila Ferrandis
et al. [12] demonstrated significant performance improve-
ments in free-space pushing tasks by leveraging model-free
reinforcement learning (RL) with categorical exploration to
capture the multimodal behavior arising from the different
possible contact interaction modes between the robot and
the manipulated object.
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Fig. 1: Example scenario for pushing in a cluttered workspace.
The robot moves a cake to a specified target pose while avoiding
collisions with other objects on the table.

In this work, we extend [12] and [9] by proposing
a system for cluttered pushing that replaces path priors
with an occupancy grid map for flexible, generalizable RL.
Unlike fixed object representations [9], our approach adapts
to unseen layouts and dynamic obstacles. To mitigate the
complexity of high-dimensional inputs, we incorporate a
lightweight location-based attention mechanism [13] to focus
on task-relevant spatial features. Our experiments show that
this combination enables effective goal-directed pushing in
complex, cluttered scenes.

In summary, our main contributions are as follows: (i) A
reinforcement learning framework for non-prehensile object
pushing in cluttered environments that operates without pre-
defined guidance and incorporates location-based attention
for improved spatial reasoning. (ii) A thorough quantitative
evaluation in simulation, analyzing performance across dif-
ferent obstacle configurations, testing generalization through
fine-tuning, and comparing the effectiveness of location-
based attention against standard feature extractors in terms of
success and collision rates. (iii) Qualitative and quantitative
experiments on a KUKA iiwa robot, demonstrating reliable,
smooth, and precise manipulation even in dynamic and
realistically cluttered scenes.

II. METHOD

In this work, we consider the following problem. A robotic
arm aims to push an object from its current pose to a target
pose (x, y, θ) within a bounded planar workspace with its
end effector, i.e., the pusher. In addition to the pushed object,
there are other objects in the workspace which are obstacles
the pushed object needs to avoid.
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Fig. 2: Overview of our framework for learning goal-directed pushing using location-based attention. (a) The grid map of the environment
together with the object and target pose, as well as the position of the pusher is fed to the RL-agent (b). In comparison to previous
work [9], we use a location-based attention module (c) for feature extraction of the cluttered scene.

To address this problem, we propose an RL framework
that leverages categorical exploration [12] to capture the
multimodal nature of planar pushing, as well as location-
based attention to extract and selectively focus on relevant
spatial features from the workspace occupancy grid, achiev-
ing obstacle avoidance while manipulating the object towards
the target pose. In the following, we describe the design of
our RL framework, summarized in Fig. 2.

A. Feature Extraction
1) Preprocessing: At the beginning of each episode, we

generate a binary occupancy grid of the workspace, where 1
represents obstacle and 0 free space. We use a resolution of
0.005m× 0.005m per grid cell.

2) Location-Based Attention: Drawing inspiration from
Visual Transformers [14], we decompose the occupancy map
into n patches, each of size Ps = 16 × 16, where n · Ps

matches the size of the original map. We use a multilayer
perceptron (MLP) of size (192, 128) to embed each patch, as
depicted in 2.a, encoding its features. This encoding process
allows us to capture the essential characteristics of each
patch, including obstacles and potential paths.

To provide positional context for each patch in the current
task configuration, we concatenate them with the object
and target positions, relative to the upper-left corner of
each patch. From the patch embeddings and the positional
context, we obtain the attention features and scores using
separate MLPs of size (128, 100, 64). Finally, we compute
the weighted attention features as depicted in Fig. 2.c and
feed the output of the location-based attention module to the
RL agent.

B. Reinforcement Learning

The hybrid dynamics inherent in non-prehensile planar
manipulation, characterized by varying contact modes such
as sticking, sliding, and separation [15], make traditional uni-
modal exploration strategies, generally parametrized through
multivariate Gaussian distributions, suboptimal. These strate-
gies struggle to model the multimodal nature of interactions
that arise from discrete contact transitions. Building on

recent work in RL for accurate planar pushing [12], we
adopt the on-policy RL algorithm Proximal Policy Optimiza-
tion (PPO) [16], using a discretized action space to enable
multimodal categorical exploration.

Below, we detail the main components of the RL pipeline.
1) Observation: The policy observation of the environ-

ment consists of the object and target poses (x, y, θ), the
pusher position (x, y), and the binary occupancy grid that
encodes the clutter layout. To reduce the computational cost
during training, we keep the grid layout fixed throughout
each episode. Nevertheless, we show in our hardware exper-
iments that the grid representation can be updated in real
time using, e.g., point cloud data or motion capture, and that
the learned policies are robust to dynamic changes in the
obstacle layout.

2) Action: We define the policy action as (vx, vy), the
x and y velocity of the pusher. Furthermore, we limit the
velocity on each axis to the range [−0.1, 0.1] m s−1 and use
0.02 m s−1 velocity steps for each categorical bin.

3) Reward: We define our reward function rtotal as

rtotal = rterm + k1(1− rdist) + k2(1− rang) + rcoll, (1)

with k1, k2 being scaling factors. rterm is a large sparse
termination reward, which is positive when the object reaches
the desired target pose and otherwise negative. rdist is
the Euclidean distance of the manipulated object to the
target position, normalized to the range [0, 1], and rang the
angular distance of the object to the target orientation, also
normalized to [0, 1]. In addition, we use rcoll as a binary
negative reward to penalize at every step any kind of contact
with an obstacle by the pusher or the object. If there is no
collision during one time step then rcoll = 0.

4) Policy and Value Networks: We use the same archi-
tecture for the policy and value networks (seeFig. 2.b). In
particular, the attention module extracts weighted attention
features (size 64) from the occupancy grid. We also use
an MLP (size 64) to extract features from the remaining
observation, which consists of the object and target pose, as
well as the pusher position. We concatenate these two feature
vectors and feed them through a Long Short-Term Memory
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Fig. 3: Training performance of the baseline approach [9] (blue),
as well as a variant without global path guidance (orange).

(LSTM) (size 256) layer and an MLP (size 128) layer. Using
LSTMs for the policy and value networks enables to capture
the hidden temporal dynamics of the environment, including
friction and inertia. The final output of the value network
is of size 1, corresponding to the state value estimate, while
the policy network returns a vector of size 22, corresponding
to logits that define the two categorical distributions for the
velocities on the x and y axes.

III. EXPERIMENTAL RESULTS

In this section, we evaluate our approach by first describ-
ing the experimental setup used for training and testing. We
then assess the performance of current state-of-the-art work
by Dengler et al. [9], analyzing the impact of global path
guidance on task success. Furthermore, we investigate the
role of the location-based attention mechanism by comparing
it with alternative feature extraction methods and conduct a
quantitative evaluation across various unseen obstacle con-
figurations to validate the generalization capabilities of our
approach in terms of success and collision rate. Finally, we
demonstrate the effectiveness of our method in a physical
hardware setup, highlighting its robustness in real-world
scenarios, including dynamic environments.

We train agents in the Isaac Sim physics simulator [17],
using a custom environment for pushing in clutter. To speed
up training, we use a single rectangular obstacle as the
default setup, with fine-tuning on two-obstacle scenarios.
Each episode samples random poses for the pusher, object,
obstacle, and target, ensuring the obstacle lies between object
and target.

For training, we employ PPO with a training episode
limit of 160 steps, that is extended to 200 during evaluation
for increased complexity (e.g., novel obstacle shapes and
multiple obstacles). The reward includes a termination bonus
(rterm = 50 for success, −10 for boundary violations), a
collision penalty (rcoll = −5), and distance-based terms
weighted by k1 = 0.1, k2 = 0.02. To enable sim-to-real
transfer, we apply dynamics randomization and synthetic
observation noise during training.

A. Baseline and Influence of Path Guidance

Since the work of Dengler et al. [9] is most closely
related to ours, we re-implemented their method in PyBul-
let [18] for comparison on our obstacle-avoidance pushing

Experimental Setup Location Based Attention (Ours) CNN Feature Extraction
Success Rate % Collision Rate % Success Rate % Collision Rate %

Training 97.1 1.26 88.5 4.83
Circular 95.6 2.66 84.7 0.56
Cross-Shape 94.1 2.90 84.5 1.75
T-Shape 93.5 4.72 85.3 0.97
L-Shape 90.2 7.75 83.8 2.47

Dual Obstacles 48.1 50.7 57.9 34.3
Dual fine-tuned (DFT) 91.2 3.54 61.1 3.22
Circular (DFT) 96.4 0.20 72.1 0.34
Cross-Shape (DFT) 96.7 0.33 73.8 0.54
T-Shape (DFT) 96.3 1.32 71.9 1.01
L-Shape (DFT) 94.9 1.58 71.2 1.22

TABLE I: Performance comparison between location-based at-
tention (Ours) and CNN feature extraction for different obstacle
configurations varying in size, shape, and quantity.

task. PyBullet was chosen due to their method’s reliance
on precomputed global paths, which limits GPU-parallelized
training in Isaac Sim.

Following their setup, we ignore target orientation in this
baseline. Attempts to include orientation, as in our method,
led to convergence failure.

We trained their baseline without access to global path
information—i.e., no sub-goal input. As shown in Fig. 3,
the guided version converges, but removing global guidance
leads to failure, highlighting its dependence on predefined
paths and its limitations in handling our guidance-free,
orientation-aware task.

B. Impact of Location-Based Attention on the Training

To assess the impact of location-based attention, we com-
pare it to alternative occupancy grid processing methods
during training and rollout. Specifically, we implement a
standard CNN with three layers and an ablation of our
method that omits the weighted attention sum, replacing it
with feature concatenation and an MLP ([2048, 512, 64]).
All models have similar parameter counts to ensure a fair
comparison.

We also tested a multi-headed self-attention (MHA) mod-
ule but excluded it due to its high memory demands, which
made training infeasible on an NVIDIA A6000 (48GB
VRAM) and severely slowed down parallel simulations.

Fig. 5 shows the resulting training curves for our pro-
posed framework as well as the CNN and MLP modified
approaches for processing the occupancy map. We report
mean and standard deviation across three training seeds. We
find that our approach with location-based attention achieves
the highest final success rate (96%). On the other hand, while
convergence is faster with the CNN structure, its asymptotic
performance is noticeably lower (87%). Furthermore, the
CNN has a 70% higher GPU memory consumption, due to
the computational overhead from convolutional operations
storing multiple large intermediate feature maps, making our
method more efficient and with a better performance. Finally,
the MLP ablation of our method, removing the weighted
sum computation with attention scores, fails to converge,
highlighting the critical role of selectively attending to spatial
features.

C. Quantitative Evaluation

We quantitatively evaluate our method against the baseline
CNN feature extraction described in Sec. III-B across various



(a) Training setup (b) L-shape obstacle (c) Dual obstacle
Fig. 4: Different obstacle configurations and the corresponding trajectories resulting from executing the push actions generated by our
RL policy in the physical hardware setup. The three experiments show (a) pushing behavior with contact surface switching, (b) a smooth
trajectory around an L-shaped obstacle, and (c) a precise pushing maneuver to fit the object through a narrow gap between two obstacles.
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Fig. 5: Training performance on our obstacle avoidance pushing
task, with (Ours) and without (CNN) attention for feature extraction.

unseen obstacle configurations, including circular, cross, T-
, L-shaped, and dual obstacle setups (Fig. 4). We evaluate
each trained policy for 2, 000 episodes per environment, with
randomized start and target poses, as well as varying obstacle
poses and sizes. We consider an episode successful when
the pusher and the manipulated object avoid collisions, the
object remains within the workspace boundaries, it is placed
within 1.5 cm and π/6 rad of the target pose, and the task
completes in no more than 200 steps.

As shown in Table I, our method consistently outperforms
the CNN baseline in single-obstacle scenarios, achieving
higher success rates and maintaining low collision rates.
While the CNN shows slightly fewer collisions, this is
reasoned by frequent inaction, leading to a high number
of time-limit failures. In contrast, our agent remains active
and successfully completes more tasks, even with unfamiliar
obstacle shapes.

In the dual obstacle setup, the CNN initially performs
better, achieving 57.9% success. However, after fine-tuning
on the dual obstacle environment (DFT) for 5 · 108 steps,
our method significantly improves to 91.2% success with
only 3.54% collisions, demonstrating strong adaptability. The
CNN baseline improves only marginally with fine-tuning,
reaching 61.1% success.

Additionally, fine-tuning our method on the dual obsta-
cle environment improves its performance on all single-
obstacle cases, showing strong generalization. The CNN,
however, performs worse after fine-tuning, indicating its poor
generalization and limited adaptability through fine-tuning.

These results highlight the effectiveness of our location-
based attention mechanism in enabling both robustness and
adaptability in cluttered environments.
D. Hardware Experiments

Our physical setup (Fig.1) uses a KUKA iiwa arm with
OpTaS[19] to map task-space actions to joint commands. We
evaluate generalization using two scene detection pipelines:
MoCap (Vicon-based, high precision) and 3Cam (three Re-
alSense D435s with AprilTags, more flexible). Note that for
the hardware experiments, we decided to fix the target pose
to simplify the setup, but our simulation experiments fully
randomize it.

To quantitatively evaluate our system’s performance, we
tested 10 random initial configurations across three MoCap
scenarios: (a) a standard setup with a single rectangular
obstacle, (b) a single obstacle of an unseen shape, and
(c) dual separated obstacles. Fig. 4 shows smooth pushing
sample trajectories generated by the physical robot in these
scenarios. The learned policy achieved a 100% success rate
in (a) and (b), while in (c), it attained a 90% success rate
due to a single collision.

Our supplemental video1 provides further qualitative
demonstrations of our system’s performance in various real-
world scenarios with both MoCap and 3Cam setups, that
include e.g., the adaptability to dynamic changes.

IV. CONCLUSION

We presented a model-free RL framework for non-
prehensile planar pushing with obstacle avoidance in clut-
tered environments. Our method combines categorical explo-
ration with a lightweight location-based attention mechanism
for efficient spatial feature extraction. Unlike prior work, it
operates without global path guidance and accounts for target
object orientation. Using an occupancy grid to represent
clutter, the system adapts well to diverse and dynamic scenes.
Experiments show high success rates and low collisions,
even with unseen obstacle shapes, and effective fine-tuning
in more complex multi-obstacle setups. Real-world tests fur-
ther validate its robustness and precision under challenging
conditions.

1https://www.youtube.com/watch?v=Ef0_oQiDq2E

https://www.youtube.com/watch?v=Ef0_oQiDq2E
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