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Our Approach

Model-free RL learning approach

Location-based attention feature extraction for obstacle
aware pushing behaviour

Categorical exploration PPO to capture multimodal behaviour
in planar pushing (slide, separating, stick)

Action: End-effector velocity (v, vy)

Observation: Object and target poses (z,y,6), N

EE position (.’l?, y), binary occupancy grid o . .Final Config o
Reward: Generalization to everday objects = not included in training

F'total = Tterm + kl(l _ Tdist) + k2(1 — Ta,ng) + Icoll

Experimental Evaluation Summary

Non-prehensile planar pushing in cluttered environments,
leveraging location-based attention for improved feature
extraction

Validation in real-world scenario, demonstrating smooth and
precise object pushing in challenging clutter layouts, including
dynamic obstacles

Performance across different obstacle configurations in size,
shape, and quantity conducted on 2,000 episodes

High success rates across all configurations

Slight increase in collision rates as complexity rises

Location Based Attention (Qurs) CNN Feature Extraction

Experimental Setup Success Rate %  Collision Rate % | Success Rate %  Collision Rate %

Training 97.1 1.26 88.5 4.83
Circular 95.6 2.66 84.7 0.56
Cross-Shape 94.1 2.90 84.5 1.75 C O n t aC t
T-Shape 935 4.72 85.3 0.97
L-Shape 90.2 1.75 83.8 2.47

Dual Obstacles 48.1 50.7 57.9 34.3 e Nils Dengler
Dual fine-tuned (DFT) 91.2 3.54 61.1 3.22 % T
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L-Shape (DFT) 94.9 1.58 71.2 1.22 ., University of Bonn
Germany
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